
LilyPond
The music typesetter

Extending

The LilyPond development team

� �
This file explains how to extend the functionality of LilyPond version 2.13.27.
 	

� �
For more information about how this manual fits with the other documentation, or to read this
manual in other formats, see Section “Manuals” in General Information.
If you are missing any manuals, the complete documentation can be found at
http://www.lilypond.org/.
 	

Copyright c© 2003–2010 by the authors.
Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.1 or any later version
published by the Free Software Foundation; with no Invariant Sections. A copy of
the license is included in the section entitled “GNU Free Documentation License”.

For LilyPond version 2.13.27

http://www.lilypond.org/

i

Table of Contents

1 Scheme tutorial . 1
1.1 Introduction to Scheme . 1

1.1.1 Scheme sandbox . 1
1.1.2 Scheme variables . 1
1.1.3 Scheme simple data types . 2
1.1.4 Scheme compound data types . 2
1.1.5 Calculations in Scheme . 4
1.1.6 Scheme procedures . 5
1.1.7 Scheme conditionals . 6

1.2 Scheme in LilyPond . 6
1.2.1 LilyPond Scheme syntax . 6
1.2.2 LilyPond variables . 7
1.2.3 Input variables and Scheme . 7
1.2.4 Object properties . 8
1.2.5 LilyPond compound variables . 9
1.2.6 Internal music representation . 9

1.3 Building complicated functions . 10
1.3.1 Displaying music expressions . 10
1.3.2 Music properties . 11
1.3.3 Doubling a note with slurs (example) . 12
1.3.4 Adding articulation to notes (example) . 13

2 Interfaces for programmers . 16
2.1 Music functions . 16

2.1.1 Music function syntax . 16
2.1.2 Simple substitution functions . 16
2.1.3 Intermediate substitution functions . 16
2.1.4 Mathematics in functions . 17
2.1.5 Functions without arguments . 18
2.1.6 Void functions . 18

2.2 Markup functions . 19
2.2.1 Markup construction in Scheme . 19
2.2.2 How markups work internally . 19
2.2.3 New markup command definition . 20

Markup command definition syntax . 20
On properties . 21
A complete example . 21
Adapting builtin commands . 22

2.2.4 New markup list command definition . 24
2.3 Contexts for programmers . 25

2.3.1 Context evaluation . 25
2.3.2 Running a function on all layout objects . 25

2.4 Callback functions . 25
2.5 Inline Scheme code . 26
2.6 Difficult tweaks . 27

3 LilyPond Scheme interfaces . 29

ii

Appendix A GNU Free Documentation License 30

Appendix B LilyPond index . 37

Chapter 1: Scheme tutorial 1

1 Scheme tutorial

LilyPond uses the Scheme programming language, both as part of the input syntax, and as
internal mechanism to glue modules of the program together. This section is a very brief
overview of entering data in Scheme. If you want to know more about Scheme, see http://www
.schemers.org.

LilyPond uses the GNU Guile implementation of Scheme, which is based on the Scheme
“R5RS” standard. If you are learning Scheme to use with LilyPond, working with a different
implementation (or referring to a different standard) is not recommended. Information on guile
can be found at http://www.gnu.org/software/guile/. The “R5RS” Scheme standard is
located at http://www.schemers.org/Documents/Standards/R5RS/.

1.1 Introduction to Scheme

We begin with an introduction to Scheme. For this brief introduction, we will use the GUILE
interpreter to explore how the language works. Once we are familiar with Scheme, we will show
how the language can be integrated in LilyPond files.

1.1.1 Scheme sandbox

The LilyPond installation includes the Guile implementation of Scheme. On most systems you
can experiment in a Scheme sandbox by opening a terminal window and typing ‘guile’. On some
systems, notably Windows, you may need to set the environment variable GUILE_LOAD_PATH
to the directory ../usr/shr/guile/1.8 in the LilyPond installation. For the full path to
this directory see Section “Other sources of information” in Learning Manual. Alternatively,
Windows users may simply choose ‘Run’ from the Start menu and enter ‘guile’.

Once the guile sandbox is running, you will receive a guile prompt:
guile>

You can enter Scheme expressions at this prompt to experiment with Scheme.

1.1.2 Scheme variables

Scheme variables can have any valid scheme value, including a Scheme procedure.
Scheme variables are created with define:

guile> (define a 2)
guile>

Scheme variables can be evaluated at the guile prompt simply by typing the variable name:
guile> a
2
guile>

Scheme variables can be printed on the display by using the display function:
guile> (display a)
2guile>

Note that both the value 2 and the guile prompt guile showed up on the same line. This can
be avoided by calling the newline procedure or displaying a newline character.

guile> (display a)(newline)
2
guile> (display a)(display "\n")
2
guile>

Once a variable has been created, its value can be changed with set!:

http://www.schemers.org
http://www.schemers.org
http://www.gnu.org/software/guile/
http://www.schemers.org/Documents/Standards/R5RS/

Chapter 1: Scheme tutorial 2

guile> (set! a 12345)
guile> a
12345
guile>

1.1.3 Scheme simple data types

The most basic concept in a language is data typing: numbers, character strings, lists, etc. Here
is a list of simple Scheme data types that are often used with LilyPond.

Booleans Boolean values are True or False. The Scheme for True is #t and False is #f.

Numbers Numbers are entered in the standard fashion, 1 is the (integer) number one, while
-1.5 is a floating point number (a non-integer number).

Strings Strings are enclosed in double quotes:
"this is a string"

Strings may span several lines:
"this
is
a string"

and the newline characters at the end of each line will be included in the string.
Newline characters can also be added by including \n in the string.

"this\nis a\nmultiline string"

Quotation marks and backslashes are added to strings by preceding them with a
backslash. The string \a said "b" is entered as

"\\a said \"b\""

There are additional Scheme data types that are not discussed here. For a complete listing see
the Guile reference guide, http://www.gnu.org/software/guile/manual/html_node/Simple-Data-Types.html.

1.1.4 Scheme compound data types

There are also compound data types in Scheme. The types commonly used in LilyPond pro-
gramming include pairs, lists, alists, and hash tables.

Pairs

The foundational compound data type of Scheme is the pair. As might be expected from its
name, a pair is two values glued together. The operator used to form a pair is called cons.

guile> (cons 4 5)
(4 . 5)
guile>

Note that the pair is displayed as two items surrounded by parentheses and separated by
whitespace, a period (.), and more whitespace. The period is not a decimal point, but rather
an indicator of the pair.

Pairs can also be entered as literal values by preceding them with a single quote character.
guile> '(4 . 5)
(4 . 5)
guile>

The two elements of a pair may be any valid Scheme value:
guile> (cons #t #f)
(#t . #f)
guile> '("blah-blah" . 3.1415926535)

http://www.gnu.org/software/guile/manual/html_node/Simple-Data-Types.html

Chapter 1: Scheme tutorial 3

("blah-blah" . 3.1415926535)
guile>

The first and second elements of the pair can be accessed by the Scheme procedures car and
cdr, respectively.

guile> (define mypair (cons 123 "hello there")
...)
guile> (car mypair)
123
guile> (cdr mypair)
"hello there"
guile>

Note: cdr is pronounced "could-er", according Sussman and Abelson, see
http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-14.html#footnote_Temp_133

Lists

A very common Scheme data structure is the list. Formally, a list is defined as either the empty
list (represented as '(), or a pair whose cdr is a list.

There are many ways of creating lists. Perhaps the most common is with the list procedure:
guile> (list 1 2 3 "abc" 17.5)
(1 2 3 "abc" 17.5)

As can be seen, a list is displayed in the form of individual elements separated by whitespace
and enclosed in parentheses. Unlike a pair, there is no period between the elements.

A list can also be entered as a literal list by enclosing its elements in parentheses, and adding
a quote:

guile> '(17 23 "foo" "bar" "bazzle")
(17 23 "foo" "bar" "bazzle")

Lists are a central part of Scheme. In, fact, Scheme is considered a dialect of lisp, where ‘lisp’
is an abbreviation for ‘List Processing’. Scheme expressions are all lists.

Association lists (alists)

A special type of list is an association list or alist. An alist is used to store data for easy retrieval.
Alists are lists whose elements are pairs. The car of each element is called the key, and the

cdr of each element is called the value. The Scheme procedure assoc is used to retrieve an entry
from the alist, and cdr is used to retrieve the value:

guile> (define my-alist '((1 . "A") (2 . "B") (3 . "C")))
guile> my-alist
((1 . "A") (2 . "B") (3 . "C"))
guile> (assoc 2 my-alist)
(2 . "B")
guile> (cdr (assoc 2 my-alist))
"B"
guile>

Alists are widely used in LilyPond to store properties and other data.

Hash tables

A data structure that is used occasionally in LilyPond. A hash table is similar to an array, but
the indexes to the array can be any type of Scheme value, not just integers.

Hash tables are more efficient than alists if there is a lot of data to store and the data changes
very infrequently.

http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-14.html#footnote_Temp_133

Chapter 1: Scheme tutorial 4

The syntax to create hash tables is a bit complex, but you can see examples of it in the
LilyPond source.

guile> (define h (make-hash-table 10))
guile> h
#<hash-table 0/31>
guile> (hashq-set! h 'key1 "val1")
"val1"
guile> (hashq-set! h 'key2 "val2")
"val2"
guile> (hashq-set! h 3 "val3")
"val3"

Values are retrieved from hash tables with hashq-ref.
guile> (hashq-ref h 3)
"val3"
guile> (hashq-ref h 'key2)
"val2"
guile>

Keys and values are retrieved as a pair with hashq-get-handle. This is a preferred way,
because it will return #f if a key is not found.

guile> (hashq-get-handle h 'key1)
(key1 . "val1")
guile> (hashq-get-handle h 'frob)
#f
guile>

1.1.5 Calculations in Scheme

Scheme can be used to do calculations. It uses prefix syntax. Adding 1 and 2 is written as (+
1 2) rather than the traditional 1 + 2.

guile> (+ 1 2)
3

Calculations may be nested; the result of a function may be used for another calculation.
guile> (+ 1 (* 3 4))
13

These calculations are examples of evaluations; an expression like (* 3 4) is replaced by its
value 12.

Scheme calculations are sensitive to the differences between integers and non-integers. Integer
calculations are exact, while non-integers are calculated to the appropriate limits of precision:

guile> (/ 7 3)
7/3
guile> (/ 7.0 3.0)
2.33333333333333

When the scheme interpreter encounters an expression that is a list, the first element of the
list is treated as a procedure to be evaluated with the arguments of the remainder of the list.
Therefore, all operators in Scheme are prefix operators.

If the first element of a Scheme expression that is a list passed to the interpreter is not an
operator or procedure, an error will occur:

guile> (1 2 3)

Backtrace:

Chapter 1: Scheme tutorial 5

In current input:
52: 0* [1 2 3]

<unnamed port>:52:1: In expression (1 2 3):
<unnamed port>:52:1: Wrong type to apply: 1
ABORT: (misc-error)
guile>

Here you can see that the interpreter was trying to treat 1 as an operator or procedure, and
it couldn’t. Hence the error is "Wrong type to apply: 1".

Therefore, to create a list we need to use the list operator, or to quote the list so that the
interpreter will not try to evaluate it.

guile> (list 1 2 3)
(1 2 3)
guile> '(1 2 3)
(1 2 3)
guile>

This is an error that can appear as you are working with Scheme in LilyPond.

1.1.6 Scheme procedures

Scheme procedures are executable scheme expressions that return a value resulting from their
execution. They can also manipulate variables defined outside of the procedure.

Defining procedures

Procedures are defined in Scheme with define

(define (function-name arg1 arg2 ... argn)
scheme-expression-that-gives-a-return-value)

For example, we could define a procedure to calculate the average:

guile> (define (average x y) (/ (+ x y) 2))
guile> average
#<procedure average (x y)>

Once a procedure is defined, it is called by putting the procedure name and the arguments
in a list. For example, we can calculate the average of 3 and 12:

guile> (average 3 12)
15/2

Predicates

Scheme procedures that return boolean values are often called predicates. By convention (but
not necessity), predicate names typically end in a question mark:

guile> (define (less-than-ten? x) (< x 10))
guile> (less-than-ten? 9)
#t
guile> (less-than-ten? 15)
#f

Return values

Scheme procedures always return a return value, which is the value of the last expression executed
in the procedure. The return value can be any valid Scheme value, including a complex data
structure or a procedure.

Chapter 1: Scheme tutorial 6

Sometimes the user would like to have multiple Scheme expressions in a procedure. There are
two ways that multiple expressions can be combined. The first is the begin procedure, which
allows multiple expressions to be evaluated, and returns the value of the last expression.

guile> (begin (+ 1 2) (- 5 8) (* 2 2))
4

The second way to combine multiple expressions is in a let block. In a let block, a series
of bindings are created, and then a sequence of expressions that can include those bindings is
evaluated. The return value of the let block is the return value of the last statement in the let
block:

guile> (let ((x 2) (y 3) (z 4)) (display (+ x y)) (display (- z 4))
... (+ (* x y) (/ z x)))
508

1.1.7 Scheme conditionals

if

Scheme has an if procedure:
(if test-expression true-expression false-expression)

test-expression is an expression that returns a boolean value. If test-expression returns #t,
the if procedure returns the value of true-expression, otherwise it returns the value of false-
expression.

guile> (define a 3)
guile> (define b 5)
guile> (if (> a b) "a is greater than b" "a is not greater than b")
"a is not greater than b"

cond

Another conditional procedure in scheme is cond:
(cond (test-expression-1 result-expression-sequence-1)

(test-expression-2 result-expression-sequence-2)
...
(test-expression-n result-expression-sequence-n))

For example:
guile> (define a 6)
guile> (define b 8)
guile> (cond ((< a b) "a is less than b")
... ((= a b) "a equals b")
... ((> a b) "a is greater than b"))
"a is less than b"

1.2 Scheme in LilyPond

1.2.1 LilyPond Scheme syntax

The Guile interpreter is part of LilyPond, which means that Scheme can be included in LilyPond
input files. The hash mark # is used to tell the LilyPond parser that the next value is a Scheme
value.

Once the parser sees a hash mark, input is passed to the Guile interpreter to evaluate the
Scheme expression. The interpreter continues to process input until the end of a Scheme expres-
sion is seen.

Chapter 1: Scheme tutorial 7

Scheme procedures can be defined in LilyPond input files:

#(define (average a b c) (/ (+ a b c) 3))

Note that LilyPond comments (% and %{ %}) cannot be used within Scheme code, even in a
LilyPond input file, because the Guile interpreter, not the LilyPond parser, is interpreting the
Scheme expression. Comments in Guile Scheme are entered as follows:

; this is a single-line comment

#!
This a (non-nestable) Guile-style block comment
But these are rarely used by Schemers and never in
LilyPond source code

!#

For the rest of this section, we will assume that the data is entered in a music file, so we add
#s at the beginning of each Scheme expression.

All of the top-level Scheme expressions in a LilyPond input file can be combined into a single
Scheme expression by the use of the begin statement:

#(begin
(define foo 0)
(define bar 1))

1.2.2 LilyPond variables

LilyPond variables are stored internally in the form of Scheme variables. Thus,

twelve = 12

is equivalent to

#(define twelve 12)

This means that LilyPond variables are available for use in Scheme expressions. For example,
we could use

twentyFour = #(* 2 twelve)

which would result in the number 24 being stored in the LilyPond (and Scheme) variable
twentyFour.

1.2.3 Input variables and Scheme

The input format supports the notion of variables: in the following example, a music expression
is assigned to a variable with the name traLaLa.

traLaLa = { c'4 d'4 }

There is also a form of scoping: in the following example, the \layout block also contains a
traLaLa variable, which is independent of the outer \traLaLa.

traLaLa = { c'4 d'4 }
\layout { traLaLa = 1.0 }

In effect, each input file is a scope, and all \header, \midi, and \layout blocks are scopes
nested inside that toplevel scope.

Both variables and scoping are implemented in the GUILE module system. An anonymous
Scheme module is attached to each scope. An assignment of the form:

traLaLa = { c'4 d'4 }

is internally converted to a Scheme definition:

Chapter 1: Scheme tutorial 8

(define traLaLa Scheme value of ‘... ’)

This means that LilyPond variables and Scheme variables may be freely mixed. In the
following example, a music fragment is stored in the variable traLaLa, and duplicated using
Scheme. The result is imported in a \score block by means of a second variable twice:
traLaLa = { c'4 d'4 }

%% dummy action to deal with parser lookahead
#(display "this needs to be here, sorry!")

#(define newLa (map ly:music-deep-copy
(list traLaLa traLaLa)))

#(define twice
(make-sequential-music newLa))

{ \twice }

¨� ¨¨� ¨
In this example, the assignment happens after the parser has verified that nothing interesting

happens after traLaLa = { ... }. Without the dummy statement in the above example, the
newLa definition is executed before traLaLa is defined, leading to a syntax error.

The above example shows how to ‘export’ music expressions from the input to the Scheme in-
terpreter. The opposite is also possible. By wrapping a Scheme value in the function ly:export,
a Scheme value is interpreted as if it were entered in LilyPond syntax. Instead of defining \twice,
the example above could also have been written as
...
{ #(ly:export (make-sequential-music (list newLa))) }

Scheme code is evaluated as soon as the parser encounters it. To define some Scheme code
in a macro (to be called later), use Section 2.1.6 [Void functions], page 18, or
#(define (nopc)
(ly:set-option 'point-and-click #f))

...
#(nopc)
{ c'4 }

Known issues and warnings

Mixing Scheme and LilyPond variables is not possible with the --safe option.

1.2.4 Object properties

Object properties are stored in LilyPond in the form of alist-chains, which are lists of alists.
Properties are set by adding values at the beginning of the property list. Properties are read by
retrieving values from the alists.

Setting a new value for a property requires assigning a value to the alist with both a key and
a value. The LilyPond syntax for doing this is:
\override Stem #'thickness = #2.6

This instruction adjusts the appearance of stems. An alist entry '(thickness . 2.6) is
added to the property list of the Stem object. thickness is measured relative to the thickness

Chapter 1: Scheme tutorial 9

of staff lines, so these stem lines will be 2.6 times the width of staff lines. This makes stems
almost twice as thick as their normal size. To distinguish between variables defined in input
files (like twentyFour in the example above) and variables of internal objects, we will call the
latter ‘properties’ and the former ‘variables.’ So, the stem object has a thickness property,
while twentyFour is a variable.

1.2.5 LilyPond compound variables

Offsets

Two-dimensional offsets (X and Y coordinates) are stored as pairs. The car of the offset is the
X coordinate, and the cdr is the Y coordinate.

\override TextScript #'extra-offset = #'(1 . 2)

This assigns the pair (1 . 2) to the extra-offset property of the TextScript object. These
numbers are measured in staff-spaces, so this command moves the object 1 staff space to the
right, and 2 spaces up.

Procedures for working with offsets are found in ‘scm/lily-library.scm’.

Extents

Pairs are also used to store intervals, which represent a range of numbers from the minimum (the
car) to the maximum (the cdr). Intervals are used to store the X- and Y- extents of printable
objects. For X extents, the car is the left hand X coordinate, and the cdr is the right hand X
coordinate. For Y extents, the car is the bottom coordinate, and the cdr is the top coordinate.

Procedures for working with intervals are found in ‘scm/lily-library.scm’. These proce-
dures should be used when possible to ensure consistency of code.

Property alists

A property alist is a LilyPond data structure that is an alist whose keys are properties and
whose values are Scheme expressions that give the desired value for the property.

LilyPond properties are Scheme symbols, such as 'thickness.

Alist chains

An alist chain is a list containing property alists.

The set of all properties that will apply to a grob is typically stored as an alist chain. In
order to find the value for a particular property that a grob should have, each alist in the chain
is searched in order, looking for an entry containing the property key. The first alist entry found
is returned, and the value is the property value.

The Scheme procedure chain-assoc-get is normally used to get grob property values.

1.2.6 Internal music representation

Internally, music is represented as a Scheme list. The list contains various elements that af-
fect the printed output. Parsing is the process of converting music from the LilyPond input
representation to the internal Scheme representation.

When a music expression is parsed, it is converted into a set of Scheme music objects. The
defining property of a music object is that it takes up time. The time it takes up is called its
duration. Durations are expressed as a rational number that measures the length of the music
object in whole notes.

A music object has three kinds of types:

Chapter 1: Scheme tutorial 10

• music name: Each music expression has a name. For example, a note leads to a Section
“NoteEvent” in Internals Reference, and \simultaneous leads to a Section “Simultaneous-
Music” in Internals Reference. A list of all expressions available is in the Internals Reference
manual, under Section “Music expressions” in Internals Reference.

• ‘type’ or interface: Each music name has several ‘types’ or interfaces, for example, a note is
an event, but it is also a note-event, a rhythmic-event, and a melodic-event. All classes
of music are listed in the Internals Reference, under Section “Music classes” in Internals
Reference.

• C++ object: Each music object is represented by an object of the C++ class Music.

The actual information of a music expression is stored in properties. For example, a Section
“NoteEvent” in Internals Reference has pitch and duration properties that store the pitch and
duration of that note. A list of all properties available can be found in the Internals Reference,
under Section “Music properties” in Internals Reference.

A compound music expression is a music object that contains other music objects in its
properties. A list of objects can be stored in the elements property of a music object, or a
single ‘child’ music object in the element property. For example, Section “SequentialMusic”
in Internals Reference has its children in elements, and Section “GraceMusic” in Internals
Reference has its single argument in element. The body of a repeat is stored in the element
property of Section “RepeatedMusic” in Internals Reference, and the alternatives in elements.

1.3 Building complicated functions

This section explains how to gather the information necessary to create complicated music
functions.

1.3.1 Displaying music expressions

When writing a music function it is often instructive to inspect how a music expression is stored
internally. This can be done with the music function \displayMusic

{
\displayMusic { c'4\f }

}

will display
(make-music
'SequentialMusic
'elements
(list (make-music

'EventChord
'elements
(list (make-music

'NoteEvent
'duration
(ly:make-duration 2 0 1 1)
'pitch
(ly:make-pitch 0 0 0))

(make-music
'AbsoluteDynamicEvent
'text
"f")))))

By default, LilyPond will print these messages to the console along with all the other mes-
sages. To split up these messages and save the results of \display{STUFF}, redirect the output
to a file.

Chapter 1: Scheme tutorial 11

lilypond file.ly >display.txt

With a bit of reformatting, the above information is easier to read,
(make-music 'SequentialMusic
'elements (list (make-music 'EventChord

'elements (list (make-music 'NoteEvent
'duration (ly:make-duration 2 0 1 1)
'pitch (ly:make-pitch 0 0 0))

(make-music 'AbsoluteDynamicEvent
'text "f")))))

A { ... } music sequence has the name SequentialMusic, and its inner expressions are
stored as a list in its 'elements property. A note is represented as an EventChord expres-
sion, containing a NoteEvent object (storing the duration and pitch properties) and any extra
information (in this case, an AbsoluteDynamicEvent with a "f" text property.

1.3.2 Music properties

TODO – make sure we delineate between music properties, context properties, and layout prop-
erties. These are potentially confusing.

The NoteEvent object is the first object of the 'elements property of someNote.
someNote = c'
\displayMusic \someNote
===>
(make-music
'EventChord
'elements
(list (make-music

'NoteEvent
'duration
(ly:make-duration 2 0 1 1)
'pitch
(ly:make-pitch 0 0 0))))

The display-scheme-music function is the function used by \displayMusic to display the
Scheme representation of a music expression.
#(display-scheme-music (first (ly:music-property someNote 'elements)))
===>
(make-music
'NoteEvent
'duration
(ly:make-duration 2 0 1 1)
'pitch
(ly:make-pitch 0 0 0))

Then the note pitch is accessed through the 'pitch property of the NoteEvent object,
#(display-scheme-music

(ly:music-property (first (ly:music-property someNote 'elements))
'pitch))

===>
(ly:make-pitch 0 0 0)

The note pitch can be changed by setting this 'pitch property,
#(set! (ly:music-property (first (ly:music-property someNote 'elements))

'pitch)

Chapter 1: Scheme tutorial 12

(ly:make-pitch 0 1 0)) ;; set the pitch to d'.
\displayLilyMusic \someNote
===>
d'

1.3.3 Doubling a note with slurs (example)

Suppose we want to create a function that translates input like a into a(a). We begin by
examining the internal representation of the desired result.
\displayMusic{ a'(a') }
===>
(make-music
'SequentialMusic
'elements
(list (make-music

'EventChord
'elements
(list (make-music

'NoteEvent
'duration
(ly:make-duration 2 0 1 1)
'pitch
(ly:make-pitch 0 5 0))

(make-music
'SlurEvent
'span-direction
-1)))

(make-music
'EventChord
'elements
(list (make-music

'NoteEvent
'duration
(ly:make-duration 2 0 1 1)
'pitch
(ly:make-pitch 0 5 0))

(make-music
'SlurEvent
'span-direction
1)))))

The bad news is that the SlurEvent expressions must be added ‘inside’ the note (or more
precisely, inside the EventChord expression).

Now we examine the input,
(make-music
'SequentialMusic
'elements
(list (make-music

'EventChord
'elements
(list (make-music

'NoteEvent
'duration

Chapter 1: Scheme tutorial 13

(ly:make-duration 2 0 1 1)
'pitch
(ly:make-pitch 0 5 0))))))

So in our function, we need to clone this expression (so that we have two notes to build
the sequence), add SlurEvents to the 'elements property of each one, and finally make a
SequentialMusic with the two EventChords.
doubleSlur = #(define-music-function (parser location note) (ly:music?)

"Return: { note (note) }.
`note' is supposed to be an EventChord."
(let ((note2 (ly:music-deep-copy note)))
(set! (ly:music-property note 'elements)

(cons (make-music 'SlurEvent 'span-direction -1)
(ly:music-property note 'elements)))

(set! (ly:music-property note2 'elements)
(cons (make-music 'SlurEvent 'span-direction 1)

(ly:music-property note2 'elements)))
(make-music 'SequentialMusic 'elements (list note note2))))

1.3.4 Adding articulation to notes (example)

The easy way to add articulation to notes is to merge two music expressions into one context,
as explained in Section “Creating contexts” in Notation Reference. However, suppose that we
want to write a music function that does this.

A $variable inside the #{...#} notation is like a regular \variable in classical LilyPond
notation. We know that
{ \music -. -> }

will not work in LilyPond. We could avoid this problem by attaching the articulation to a fake
note,
{ << \music s1*0-.-> }

but for the sake of this example, we will learn how to do this in Scheme. We begin by examining
our input and desired output,
% input
\displayMusic c4
===>
(make-music
'EventChord
'elements
(list (make-music

'NoteEvent
'duration
(ly:make-duration 2 0 1 1)
'pitch
(ly:make-pitch -1 0 0))))

=====
% desired output
\displayMusic c4->
===>
(make-music
'EventChord
'elements
(list (make-music

Chapter 1: Scheme tutorial 14

'NoteEvent
'duration
(ly:make-duration 2 0 1 1)
'pitch
(ly:make-pitch -1 0 0))

(make-music
'ArticulationEvent
'articulation-type
"marcato")))

We see that a note (c4) is represented as an EventChord expression, with a NoteEvent
expression in its elements list. To add a marcato articulation, an ArticulationEvent expression
must be added to the elements property of the EventChord expression.

To build this function, we begin with
(define (add-marcato event-chord)
"Add a marcato ArticulationEvent to the elements of `event-chord',
which is supposed to be an EventChord expression."
(let ((result-event-chord (ly:music-deep-copy event-chord)))

(set! (ly:music-property result-event-chord 'elements)
(cons (make-music 'ArticulationEvent

'articulation-type "marcato")
(ly:music-property result-event-chord 'elements)))

result-event-chord))

The first line is the way to define a function in Scheme: the function name is add-marcato,
and has one variable called event-chord. In Scheme, the type of variable is often clear from its
name. (this is good practice in other programming languages, too!)
"Add a marcato..."

is a description of what the function does. This is not strictly necessary, but just like clear
variable names, it is good practice.
(let ((result-event-chord (ly:music-deep-copy event-chord)))

let is used to declare local variables. Here we use one local variable, named
result-event-chord, to which we give the value (ly:music-deep-copy event-chord).
ly:music-deep-copy is a function specific to LilyPond, like all functions prefixed by ly:. It is
use to make a copy of a music expression. Here we copy event-chord (the parameter of the
function). Recall that our purpose is to add a marcato to an EventChord expression. It is
better to not modify the EventChord which was given as an argument, because it may be used
elsewhere.

Now we have a result-event-chord, which is a NoteEventChord expression and is a copy
of event-chord. We add the marcato to its 'elements list property.
(set! place new-value)

Here, what we want to set (the ‘place’) is the 'elements property of result-event-chord
expression.
(ly:music-property result-event-chord 'elements)

ly:music-property is the function used to access music properties (the 'elements,
'duration, 'pitch, etc, that we see in the \displayMusic output above). The new value is
the former 'elements property, with an extra item: the ArticulationEvent expression, which
we copy from the \displayMusic output,
(cons (make-music 'ArticulationEvent

'articulation-type "marcato")
(ly:music-property result-event-chord 'elements))

Chapter 1: Scheme tutorial 15

cons is used to add an element to a list without modifying the original list. This is what we
want: the same list as before, plus the new ArticulationEvent expression. The order inside
the 'elements property is not important here.

Finally, once we have added the marcato articulation to its elements property, we can return
result-event-chord, hence the last line of the function.

Now we transform the add-marcato function into a music function,
addMarcato = #(define-music-function (parser location event-chord)

(ly:music?)
"Add a marcato ArticulationEvent to the elements of `event-chord',
which is supposed to be an EventChord expression."
(let ((result-event-chord (ly:music-deep-copy event-chord)))
(set! (ly:music-property result-event-chord 'elements)

(cons (make-music 'ArticulationEvent
'articulation-type "marcato")

(ly:music-property result-event-chord 'elements)))
result-event-chord))

We may verify that this music function works correctly,
\displayMusic \addMarcato c4

Chapter 2: Interfaces for programmers 16

2 Interfaces for programmers

Advanced tweaks may be performed by using Scheme. If you are not familiar with Scheme, you
may wish to read our Chapter 1 [Scheme tutorial], page 1.

2.1 Music functions

Music functions are scheme procedures that can create music expressions automatically, and
can be used to greatly simplify the input file.

2.1.1 Music function syntax

The general form for music functions is:
function =
#(define-music-function

(parser location arg1 arg2 ...)
(type1? type2? ...)

music)

where
argN nth argument

typeN? a scheme type predicate for which argN must return #t.

music A music expression, optionally written in scheme, with any
LilyPond code enclosed in hashed braces (#{...#}). Within
LilyPond code blocks, use $ to reference function arguments
(eg., ‘$arg1’) or to start an inline scheme expression contain-
ing function arguments (eg., ‘$(cons arg1 arg2)’).

For a list of available type predicates, see Section “Predefined type predicates” in Notation
Reference. User-defined type predicates are also allowed.

See also

Notation Reference: Section “Predefined type predicates” in Notation Reference.
Installed Files: ‘lily/music-scheme.cc’, ‘scm/c++.scm’, ‘scm/lily.scm’.

2.1.2 Simple substitution functions

Simple substitution functions are music functions whose output music expression is written in
LilyPond format and contains function arguments in the output expression. They are described
in Section “Substitution function examples” in Notation Reference.

2.1.3 Intermediate substitution functions

Intermediate substitution functions involve a mix of Scheme code and LilyPond code in the
music expression to be returned.

Some \override commands require an argument consisting of a pair of numbers (called a
cons cell in Scheme).

The pair can be directly passed into the music function, using a pair? variable:
manualBeam =
#(define-music-function

(parser location beg-end)

Chapter 2: Interfaces for programmers 17

(pair?)
#{
\once \override Beam #'positions = $beg-end

#})

\relative c' {
\manualBeam #'(3 . 6) c8 d e f

}

Alternatively, the numbers making up the pair can be passed as separate arguments, and the
Scheme code used to create the pair can be included in the music expression:

manualBeam =
#(define-music-function

(parser location beg end)
(number? number?)

#{
\once \override Beam #'positions = $(cons beg end)

#})

\relative c' {
\manualBeam #3 #6 c8 d e f

}

 � � ���
2.1.4 Mathematics in functions

Music functions can involve Scheme programming in addition to simple substitution,

AltOn =
#(define-music-function

(parser location mag)
(number?)

#{
\override Stem #'length = $(* 7.0 mag)
\override NoteHead #'font-size =
$(inexact->exact (* (/ 6.0 (log 2.0)) (log mag)))

#})

AltOff = {
\revert Stem #'length
\revert NoteHead #'font-size

}

\relative c' {
c2 \AltOn #0.5 c4 c
\AltOn #1.5 c c \AltOff c2

}

Chapter 2: Interfaces for programmers 18

3�
DD D �� D

This example may be rewritten to pass in music expressions,
withAlt =
#(define-music-function

(parser location mag music)
(number? ly:music?)

#{
\override Stem #'length = $(* 7.0 mag)
\override NoteHead #'font-size =
$(inexact->exact (* (/ 6.0 (log 2.0)) (log mag)))

$music
\revert Stem #'length
\revert NoteHead #'font-size

#})

\relative c' {
c2 \withAlt #0.5 { c4 c }
\withAlt #1.5 { c c } c2

}

D D -D D-��
2.1.5 Functions without arguments

In most cases a function without arguments should be written with a variable,
dolce = \markup{ \italic \bold dolce }

However, in rare cases it may be useful to create a music function without arguments,
displayBarNum =
#(define-music-function

(parser location)
()

(if (eq? #t (ly:get-option 'display-bar-numbers))
#{ \once \override Score.BarNumber #'break-visibility = ##f #}
#{#}))

To actually display bar numbers where this function is called, invoke lilypond with
lilypond -d display-bar-numbers FILENAME.ly

2.1.6 Void functions

A music function must return a music expression, but sometimes we may want to have a function
that does not involve music (such as turning off Point and Click). To do this, we return a void
music expression.

That is why the form that is returned is the (make-music ...). With the 'void property
set to #t, the parser is told to actually disregard this returned music expression. Thus the
important part of the void music function is the processing done by the function, not the music
expression that is returned.
noPointAndClick =
#(define-music-function

(parser location)

Chapter 2: Interfaces for programmers 19

()
(ly:set-option 'point-and-click #f)
(make-music 'SequentialMusic 'void #t))

...
\noPointAndClick % disable point and click

2.2 Markup functions

Markups are implemented as special Scheme functions which produce a Stencil object given a
number of arguments.

2.2.1 Markup construction in Scheme

The markup macro builds markup expressions in Scheme while providing a LilyPond-like syntax.
For example,

(markup #:column (#:line (#:bold #:italic "hello" #:raise 0.4 "world")
#:larger #:line ("foo" "bar" "baz")))

is equivalent to:

\markup \column { \line { \bold \italic "hello" \raise #0.4 "world" }
\larger \line { foo bar baz } }

This example demonstrates the main translation rules between regular LilyPond markup syntax
and Scheme markup syntax.

LilyPond Scheme
\markup markup1 (markup markup1)
\markup { markup1
markup2 ... }

(markup markup1
markup2 ...)

\markup-command #:markup-command
\variable variable
\center-column { ... } #:center-column (...

)

string "string"
#scheme-arg scheme-arg

The whole Scheme language is accessible inside the markup macro. For example, You may
use function calls inside markup in order to manipulate character strings. This is useful when
defining new markup commands (see Section 2.2.3 [New markup command definition], page 20).

Known issues and warnings

The markup-list argument of commands such as #:line, #:center, and #:column cannot be a
variable or the result of a function call.

(markup #:line (function-that-returns-markups))

is invalid. One should use the make-line-markup, make-center-markup, or
make-column-markup functions instead,

(markup (make-line-markup (function-that-returns-markups)))

2.2.2 How markups work internally

In a markup like

\raise #0.5 "text example"

\raise is actually represented by the raise-markup function. The markup expression is stored
as

Chapter 2: Interfaces for programmers 20

(list raise-markup 0.5 (list simple-markup "text example"))

When the markup is converted to printable objects (Stencils), the raise-markup function is
called as
(apply raise-markup

\layout object

list of property alists

0.5
the "text example" markup)

The raise-markup function first creates the stencil for the text example string, and then it
raises that Stencil by 0.5 staff space. This is a rather simple example; more complex examples
are in the rest of this section, and in ‘scm/define-markup-commands.scm’.

2.2.3 New markup command definition

This section discusses the definition of new markup commands.

Markup command definition syntax

New markup commands can be defined using the define-markup-command Scheme macro, at
top-level.
(define-markup-command (command-name layout props arg1 arg2 ...)

(arg1-type? arg2-type? ...)
[#:properties ((property1 default-value1)

...)]
..command body..)

The arguments are

command-name
the markup command name

layout the ‘layout’ definition.

props a list of associative lists, containing all active properties.

argi ith command argument

argi-type? a type predicate for the ith argument

If the command uses properties from the props arguments, the #:properties keyword can
be used, to specify which properties are used, and their default values.

Arguments are distinguished according to their type:
• a markup, corresponding to type predicate markup?;
• a list of markups, corresponding to type predicate markup-list?;
• any other scheme object, corresponding to type predicates such as list?, number?,

boolean?, etc.

There is no limitation on the order of arguments (after the standard layout and props ar-
guments). However, markup functions taking a markup as their last argument are somewhat
special as you can apply them to a markup list, and the result is a markup list where the markup
function (with the specified leading arguments) has been applied to every element of the original
markup list.

Since replicating the leading arguments for applying a markup function to a markup list
is cheap mostly for Scheme arguments, you avoid performance pitfalls by just using Scheme
arguments for the leading arguments of markup functions that take a markup as their last
argument.

Chapter 2: Interfaces for programmers 21

On properties

The layout and props arguments of markup commands bring a context for the markup inter-
pretation: font size, line width, etc.

The layout argument allows access to properties defined in paper blocks, using the
ly:output-def-lookup function. For instance, the line width (the same as the one used in
scores) is read using:
(ly:output-def-lookup layout 'line-width)

The props argument makes some properties accessible to markup commands. For instance,
when a book title markup is interpreted, all the variables defined in the \header block are auto-
matically added to props, so that the book title markup can access the book title, composer, etc.
It is also a way to configure the behaviour of a markup command: for example, when a command
uses font size during processing, the font size is read from props rather than having a font-size
argument. The caller of a markup command may change the value of the font size property in
order to change the behaviour. Use the #:properties keyword of define-markup-command to
specify which properties shall be read from the props arguments.

The example in next section illustrates how to access and override properties in a markup
command.

A complete example

The following example defines a markup command to draw a double box around a piece of text.
Firstly, we need to build an approximative result using markups. Consulting the Section

“Text markup commands” in Notation Reference shows us the \box command is useful:
\markup \box \box HELLO

HELLO

Now, we consider that more padding between the text and the boxes is preferable. According
to the \box documentation, this command uses a box-padding property, which defaults to 0.2.
The documentation also mentions how to override it:
\markup \box \override #'(box-padding . 0.6) \box A

A

Then, the padding between the two boxes is considered too small, so we override it too:
\markup \override #'(box-padding . 0.4) \box \override #'(box-padding . 0.6) \box A

A

Repeating this lengthy markup would be painful. This is where a markup command is needed.
Thus, we write a double-box markup command, taking one argument (the text). This draws
the two boxes, with some padding.
#(define-markup-command (double-box layout props text) (markup?)
"Draw a double box around text."
(interpret-markup layout props

(markup #:override '(box-padding . 0.4) #:box
#:override '(box-padding . 0.6) #:box text)))

text is the name of the command argument, and markup? its type: it identifies it as a
markup. The interpret-markup function is used in most of markup commands: it builds a

Chapter 2: Interfaces for programmers 22

stencil, using layout, props, and a markup. Here, this markup is built using the markup scheme
macro, see Section 2.2.1 [Markup construction in Scheme], page 19. The transformation from
\markup expression to scheme markup expression is straight-forward.

The new command can be used as follow:
\markup \double-box A

It would be nice to make the double-box command customizable: here, the box-padding
values are hard coded, and cannot be changed by the user. Also, it would be better to distinguish
the padding between the two boxes, from the padding between the inner box and the text. So
we will introduce a new property, inter-box-padding, for the padding between the two boxes.
The box-padding will be used for the inner padding. The new code is now as follows:
#(define-markup-command (double-box layout props text) (markup?)
#:properties ((inter-box-padding 0.4)

(box-padding 0.6))
"Draw a double box around text."
(interpret-markup layout props

(markup #:override `(box-padding . ,inter-box-padding) #:box
#:override `(box-padding . ,box-padding) #:box text)))

Here, the #:properties keyword is used so that the inter-box-padding and box-padding
properties are read from the props argument, and default values are given to them if the
properties are not defined.

Then, these values are used to override the box-padding properties used by the two \box
commands. Note the backquote and the comma in the \override argument: they allow you to
introduce a variable value into a literal expression.

Now, the command can be used in a markup, and the boxes padding be customized:
#(define-markup-command (double-box layout props text) (markup?)
#:properties ((inter-box-padding 0.4)

(box-padding 0.6))
"Draw a double box around text."
(interpret-markup layout props

(markup #:override `(box-padding . ,inter-box-padding) #:box
#:override `(box-padding . ,box-padding) #:box text)))

\markup \double-box A
\markup \override #'(inter-box-padding . 0.8) \double-box A
\markup \override #'(box-padding . 1.0) \double-box A

A

A

A

Adapting builtin commands

A good way to start writing a new markup command, is to take example on a builtin one. Most
of the markup commands provided with LilyPond can be found in file ‘scm/define-markup
-commands.scm’.

Chapter 2: Interfaces for programmers 23

For instance, we would like to adapt the \draw-line command, to draw a double line instead.
The \draw-line command is defined as follow (documentation stripped):

(define-markup-command (draw-line layout props dest)
(number-pair?)
#:category graphic
#:properties ((thickness 1))
"..documentation.."
(let ((th (* (ly:output-def-lookup layout 'line-thickness)

thickness))
(x (car dest))
(y (cdr dest)))

(make-line-stencil th 0 0 x y)))

To define a new command based on an existing one, copy the definition, and change the com-
mand name. The #:category keyword can be safely removed, as it is only used for generating
LilyPond documentation, and is of no use for user-defined markup commands.

(define-markup-command (draw-double-line layout props dest)
(number-pair?)
#:properties ((thickness 1))
"..documentation.."
(let ((th (* (ly:output-def-lookup layout 'line-thickness)

thickness))
(x (car dest))
(y (cdr dest)))

(make-line-stencil th 0 0 x y)))

Then, a property for setting the gap between two lines is added, called line-gap, defaulting
e.g. to 0.6:

(define-markup-command (draw-double-line layout props dest)
(number-pair?)
#:properties ((thickness 1)

(line-gap 0.6))
"..documentation.."
...

Finally, the code for drawing two lines is added. Two calls to make-line-stencil are used
to draw the lines, and the resulting stencils are combined using ly:stencil-add:

#(define-markup-command (my-draw-line layout props dest)
(number-pair?)
#:properties ((thickness 1)

(line-gap 0.6))
"..documentation.."
(let* ((th (* (ly:output-def-lookup layout 'line-thickness)

thickness))
(dx (car dest))
(dy (cdr dest))
(w (/ line-gap 2.0))
(x (cond ((= dx 0) w)

((= dy 0) 0)
(else (/ w (sqrt (+ 1 (* (/ dx dy) (/ dx dy))))))))

(y (* (if (< (* dx dy) 0) 1 -1)
(cond ((= dy 0) w)

((= dx 0) 0)

Chapter 2: Interfaces for programmers 24

(else (/ w (sqrt (+ 1 (* (/ dy dx) (/ dy dx))))))))))
(ly:stencil-add (make-line-stencil th x y (+ dx x) (+ dy y))

(make-line-stencil th (- x) (- y) (- dx x) (- dy y)))))

\markup \my-draw-line #'(4 . 3)
\markup \override #'(line-gap . 1.2) \my-draw-line #'(4 . 3)

2.2.4 New markup list command definition

Markup list commands are defined with the define-markup-list-command Scheme macro,
which is similar to the define-markup-command macro described in Section 2.2.3 [New markup
command definition], page 20, except that where the latter returns a single stencil, the former
returns a list of stencils.

In the following example, a \paragraph markup list command is defined, which returns a
list of justified lines, the first one being indented. The indent width is taken from the props
argument.

#(define-markup-list-command (paragraph layout props args) (markup-list?)
#:properties ((par-indent 2))
(interpret-markup-list layout props
(make-justified-lines-markup-list (cons (make-hspace-markup par-indent)

args))))

Besides the usual layout and props arguments, the paragraph markup list command takes
a markup list argument, named args. The predicate for markup lists is markup-list?.

First, the function gets the indent width, a property here named par-indent, from the prop-
erty list props. If the property is not found, the default value is 2. Then, a list of justified
lines is made using the make-justified-lines-markup-list function, which is related to the
\justified-lines built-in markup list command. A horizontal space is added at the begin-
ning using the make-hspace-markup function. Finally, the markup list is interpreted using the
interpret-markup-list function.

This new markup list command can be used as follows:

\markuplines {
\paragraph {

The art of music typography is called \italic {(plate) engraving.}
The term derives from the traditional process of music printing.
Just a few decades ago, sheet music was made by cutting and stamping
the music into a zinc or pewter plate in mirror image.

}
\override-lines #'(par-indent . 4) \paragraph {

The plate would be inked, the depressions caused by the cutting
and stamping would hold ink. An image was formed by pressing paper
to the plate. The stamping and cutting was completely done by
hand.

}
}

Chapter 2: Interfaces for programmers 25

2.3 Contexts for programmers

2.3.1 Context evaluation

Contexts can be modified during interpretation with Scheme code. The syntax for this is
\applyContext function

function should be a Scheme function that takes a single argument: the context in which the
\applyContext command is being called. The following code will print the current bar number
on the standard output during the compile:
\applyContext
#(lambda (x)

(format #t "\nWe were called in barnumber ~a.\n"
(ly:context-property x 'currentBarNumber)))

2.3.2 Running a function on all layout objects

The most versatile way of tuning an object is \applyOutput. Its syntax is
\applyOutput context proc

where proc is a Scheme function, taking three arguments.
When interpreted, the function proc is called for every layout object found in the context

context, with the following arguments:
• the layout object itself,
• the context where the layout object was created, and
• the context where \applyOutput is processed.

In addition, the cause of the layout object, i.e., the music expression or object that was
responsible for creating it, is in the object property cause. For example, for a note head, this
is a Section “NoteHead” in Internals Reference event, and for a Section “Stem” in Internals
Reference object, this is a Section “NoteHead” in Internals Reference object.

Here is a function to use for \applyOutput; it blanks note-heads on the center-line:
#(define (blanker grob grob-origin context)

(if (and (memq 'note-head-interface (ly:grob-interfaces grob))
(eq? (ly:grob-property grob 'staff-position) 0))

(set! (ly:grob-property grob 'transparent) #t)))

\relative c' {
e4 g8 \applyOutput #'Voice #blanker b d2

}

�� � � �

2.4 Callback functions

Properties (like thickness, direction, etc.) can be set at fixed values with \override, e.g.
\override Stem #'thickness = #2.0

Properties can also be set to a Scheme procedure,
\override Stem #'thickness = #(lambda (grob)

(if (= UP (ly:grob-property grob 'direction))
2.0

Chapter 2: Interfaces for programmers 26

7.0))
c b a g b a g b

© ��� ���� ��
In this case, the procedure is executed as soon as the value of the property is requested during
the formatting process.

Most of the typesetting engine is driven by such callbacks. Properties that typically use
callbacks include

stencil The printing routine, that constructs a drawing for the symbol

X-offset The routine that sets the horizontal position

X-extent The routine that computes the width of an object

The procedure always takes a single argument, being the grob.
If routines with multiple arguments must be called, the current grob can be inserted with a

grob closure. Here is a setting from AccidentalSuggestion,
`(X-offset .
,(ly:make-simple-closure

`(,+
,(ly:make-simple-closure

(list ly:self-alignment-interface::centered-on-x-parent))
,(ly:make-simple-closure

(list ly:self-alignment-interface::x-aligned-on-self)))))

In this example, both ly:self-alignment-interface::x-aligned-on-self and
ly:self-alignment-interface::centered-on-x-parent are called with the grob as
argument. The results are added with the + function. To ensure that this addition is properly
executed, the whole thing is enclosed in ly:make-simple-closure.

In fact, using a single procedure as property value is equivalent to
(ly:make-simple-closure (ly:make-simple-closure (list proc)))

The inner ly:make-simple-closure supplies the grob as argument to proc, the outer ensures
that result of the function is returned, rather than the simple-closure object.

From within a callback, the easiest method for evaluating a markup is to use grob-interpret-
markup. For example:
my-callback = #(lambda (grob)

(grob-interpret-markup grob (markup "foo")))

2.5 Inline Scheme code

The main disadvantage of \tweak is its syntactical inflexibility. For example, the following
produces a syntax error.
F = \tweak #'font-size #-3 -\flageolet

\relative c'' {
c4^\F c4_\F

}

In other words, \tweak doesn’t behave like an articulation regarding the syntax; in particular,
it can’t be attached with ^ and _.

Chapter 2: Interfaces for programmers 27

Using Scheme, this problem can be avoided. The route to the result is given in Section 1.3.4
[Adding articulation to notes (example)], page 13, especially how to use \displayMusic as a
helping guide.
F = #(let ((m (make-music 'ArticulationEvent

'articulation-type "flageolet")))
(set! (ly:music-property m 'tweaks)

(acons 'font-size -3
(ly:music-property m 'tweaks)))

m)

\relative c'' {
c4^\F c4_\F

}

Here, the tweaks properties of the flageolet object m (created with make-music) are extracted
with ly:music-property, a new key-value pair to change the font size is prepended to the
property list with the acons Scheme function, and the result is finally written back with set!.
The last element of the let block is the return value, m itself.

2.6 Difficult tweaks

There are a few classes of difficult adjustments.
• One type of difficult adjustment involves the appearance of spanner objects, such as slurs

and ties. Usually, only one spanner object is created at a time, and it can be adjusted with
the normal mechanism. However, occasionally a spanner crosses a line break. When this
happens, the object is cloned. A separate object is created for every system in which the
spanner appears. The new objects are clones of the original object and inherit all properties,
including \overrides.
In other words, an \override always affects all pieces of a broken spanner. To change only
one part of a spanner at a line break, it is necessary to hook into the formatting process.
The after-line-breaking callback contains the Scheme procedure that is called after the
line breaks have been determined and layout objects have been split over different systems.
In the following example, we define a procedure my-callback. This procedure
• determines if the spanner has been split across line breaks
• if yes, retrieves all the split objects
• checks if this grob is the last of the split objects
• if yes, it sets extra-offset.

This procedure is installed into Section “Tie” in Internals Reference, so the last part of the
broken tie is repositioned.
#(define (my-callback grob)

(let* (
;; have we been split?
(orig (ly:grob-original grob))

;; if yes, get the split pieces (our siblings)
(siblings (if (ly:grob? orig)

(ly:spanner-broken-into orig)
'())))

(if (and (>= (length siblings) 2)
(eq? (car (last-pair siblings)) grob))

Chapter 2: Interfaces for programmers 28

(ly:grob-set-property! grob 'extra-offset '(-2 . 5)))))

\relative c'' {
\override Tie #'after-line-breaking =
#my-callback
c1 ~ \break
c2 ~ c

}

© ��

-2

� -
When applying this trick, the new after-line-breaking callback should also call
the old one, if such a default exists. For example, if using this with Hairpin,
ly:spanner::kill-zero-spanned-time should also be called.

• Some objects cannot be changed with \override for technical reasons. Examples of
those are NonMusicalPaperColumn and PaperColumn. They can be changed with the
\overrideProperty function, which works similar to \once \override, but uses a dif-
ferent syntax.
\overrideProperty
#"Score.NonMusicalPaperColumn" % Grob name
#'line-break-system-details % Property name
#'((next-padding . 20)) % Value

Note, however, that \override, applied to NonMusicalPaperColumn and PaperColumn, still
works as expected within \context blocks.

Chapter 3: LilyPond Scheme interfaces 29

3 LilyPond Scheme interfaces

This chapter covers the various tools provided by LilyPond to help Scheme programmers get
information into and out of the music streams.

TODO – figure out what goes in here and how to organize it

Appendix A: GNU Free Documentation License 30

Appendix A GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.
A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.

http://fsf.org/

Appendix A: GNU Free Documentation License 31

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ascii without markup,
Texinfo input format, LaTEX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word proces-
sors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.
The “publisher” means any person or entity that distributes copies of the Document to the
public.
A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both

Appendix A: GNU Free Documentation License 32

covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copy-

right notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating

at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its

Appendix A: GNU Free Documentation License 33

Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

Appendix A: GNU Free Documentation License 34

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute
it is void, and will automatically terminate your rights under this License.
However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.

Appendix A: GNU Free Documentation License 35

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If the
Document specifies that a proxy can decide which future versions of this License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you
to choose that version for the Document.

11. RELICENSING
“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody
to edit those works. A public wiki that anybody can edit is an example of such a server. A
“Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set of
copyrightable works thus published on the MMC site.
“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published
by Creative Commons Corporation, a not-for-profit corporation with a principal place of
business in San Francisco, California, as well as future copyleft versions of that license
published by that same organization.
“Incorporate” means to publish or republish a Document, in whole or in part, as part of
another Document.
An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.
The operator of an MMC Site may republish an MMC contained in the site under CC-BY-
SA on the same site at any time before August 1, 2009, provided the MMC is eligible for
relicensing.

http://www.gnu.org/copyleft/

Appendix A: GNU Free Documentation License 36

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ``GNU

Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

Appendix B: LilyPond index 37

Appendix B LilyPond index

#
. 1
##f . 2
##t . 2

\
\applyContext . 25
\applyOutput . 25
\displayLilyMusic . 11
\displayMusic . 10

A
accessing Scheme . 1

C
calling code during interpreting 25
calling code on layout objects . 25

D
defining markup commands . 19
displaying music expressions . 10
displayMusic . 10

E
evaluating Scheme . 1

G
GUILE . 1

I
internal representation, displaying 10
internal storage . 10

L
LISP . 1

M
Manuals . 1

P
properties vs. variables . 9

S
Scheme . 1
Scheme, in-line code . 1

V
variables vs. properties . 9

	Scheme tutorial
	Introduction to Scheme
	Scheme sandbox
	Scheme variables
	Scheme simple data types
	Scheme compound data types
	Calculations in Scheme
	Scheme procedures
	Scheme conditionals

	Scheme in LilyPond
	LilyPond Scheme syntax
	LilyPond variables
	Input variables and Scheme
	Object properties
	LilyPond compound variables
	Internal music representation

	Building complicated functions
	Displaying music expressions
	Music properties
	Doubling a note with slurs (example)
	Adding articulation to notes (example)

	Interfaces for programmers
	Music functions
	Music function syntax
	Simple substitution functions
	Intermediate substitution functions
	Mathematics in functions
	Functions without arguments
	Void functions

	Markup functions
	Markup construction in Scheme
	How markups work internally
	New markup command definition
	Markup command definition syntax
	On properties
	A complete example
	Adapting builtin commands

	New markup list command definition

	Contexts for programmers
	Context evaluation
	Running a function on all layout objects

	Callback functions
	Inline Scheme code
	Difficult tweaks

	LilyPond Scheme interfaces
	GNU Free Documentation License
	LilyPond index

