X I nput Device Extension Library

X Consortium Standard

X Version 11, Release 6.9/7.0

Mark P atrick Ardent Computer
George Sachs Hewlett-Packard

Copyright © 1989, 1990, 1991 by Hewlett-Packard ComgpaArdent Computer.

Permission to use, cgpmodify, and distribute this documentation forygourpose and without

fee is hereby granted, provided that thevabmpyright notice and this permission notice appear
in all copies. Ardent, and Hewlett-Packard maio epresentations about the suitability for any
purpose of the information in this document. It is provided ~awithout express or implied
warranty.

Copyright (c) 1989, 1990, 1991, 1992Consortium

Permission is hereby granted, free of charge, ygparson obtaining a cgpf this software and
associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, gomodify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
S0, subject to the following conditions:

The abee mpyright notice and this permission notice shall be included in all copies or substan-
tial portions of the Software.

THE SOFTWARE IS PRVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT ND LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGE-
MENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACTTORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising
or otherwise to promote the sale, use or other dealings in this Software without prior written
authorization from the X Consortium.

X Wndow Systeris a trademark of The Open Group.

1. Input Extension Overview

This document describes an extension to the X11 sefver purpose of this extension is to sup-
port the use of additional input devices beyond the pointer eyiwb&rd devices defined by the
core X protocol. This first sectionvgs an werview of the input &tension. Thdollowing sec-
tions correspond to chapters 9, 10, and 11, “Wimdod Session Manager Functions”,
“Events”, and “Event Handling Functionsf the “Xlib - C Language Interfacemanual and
describe hw to use the input device extension.

1.1. DesignApproach

The design approach of the extension is to define functionsvanits$ @nalogous to the core func-
tions and eents. Thisallows extension input devices angbets to be individually distinguish-
able from each other and from the core input devices\amise Thesdunctions andeents

malke use of a device identifier and support the reporting-dimensional motion data as well as
other data that is not currently reportable via the core inpate

1.2. Cor Input Devices

The X server core protocol supporttimput devices: apointer and adyboard. Thepointer

device has tw major functions. First, it may be used to generate motion information that client
programs can detect. Second, it may also be used to indicate the current location and focus of the
X keyboard. B accomplish this, the server echoes a cursor at the current position of the X

pointet Unless the X &yboard has been explicitly focused, this cursor also shows the current
location and focus of the Xekboard.

The X keyboard is used to generate input that client programs can detect.

The X keyboard and X pointer are referred to in this document asoileetevices and the input
events thg generate KeyPress KeyRelease ButtonPress, ButtonRelease and MotionNo-
tify) are known as theore input events All other input devices are referred toeagension input
devicesand the input eents thg generate are referred to edension input events

Note

This input extension does not change the behavior or functionality of the core input
devices, corewents, or core protocol requests, with the exception of the core grab
requests. Thesequests may affect the synchronizationwahés from extension
devices. Seg¢he explanation in the section titled “Event Synchronization and Core
Grabs.

Selection of the physical devices to be initially used by the server as the core devices is left imple-
mentation dependent. Functions are defined that @lient programs to change which physical
devices are used as the core devices.

1.3. Extensionlnput Devices

The input extension controls access to input devices other than #ddakd and X pointerlt

allows client programs to select input from these devices independently from each other and inde-
pendently from the core diees. Inputevents from these devices are of extension types
(DeviceKeyPress DeviceKeyReleasgDeviceButtonPress DeviceButtonRelease DeviceMo-
tionNotify , and so on) and contain a device identifier so thietts of the same type coming

from different input devices can be distinguished.

Extension inputents are not limited in size by the size of the server 32-byte wirdse Exten-
sion input @ents may be constructed by the server sending ag wiae-sized gents as

necessary to return the information required for thiete Thelibrary event reformatting rou-
tines are responsible for combining these into one or more client XEvents.

Any input device that generatesykbutton, or motion data may be used as an extension input
device. Extensionnput devices may va zro or more &ys, zero or more buttons, and may
report zero or more axes of motion. Motion may be reported asvectativements from a previ-
ous position or as an absolute position. All valuators reporting motion information fe@na gi
extension input device must report the same kind of motion information (absolute eeyelati

This extension is designed to accommodate types of input devices that may be added in the
future. Theprotocol requests that refer to specific characteristics of input devgapszerthat
information byinput device classesServer implementors may addwelasses of input devices
without changing the protocol requests.

All extension input devices are treatectlike core X kyboard in determining their location and

focus. Theserver does not track the location of these devices on an individual basis and, there-
fore, does not echo a cursor to indicate their current location. Instead, their location is determined
by the location of the core X pointeike the core X kyboard, some may be explicitly focused.

If they are not explicitly focused, their focus is determined by the location of the core X pointer.

1.3.1. InputDevice Classes

Some of the input extension requests divide input devices into classes based on their functionality.
This is intended to all® new dasses of input devices to be defined at a later time without chang-
ing the semantics of these functions. The following input device classes are currently defined:

KEY The device reportsdy events.

BUTTON The device reports buttonents.

VALUATOR The device reports valuator data in motioands.
PROXIMITY The device reports proximityents.

FOCUS The device can be focused.

FEEDBACK The device supports feedbacks.

Additional classes may be added in the future. Functions that support multiple input classes, such
as theXListInputDevices function that lists all@ailable input devices, genize the data they

return by input class. Client programs that use these functions should not access data unless it
matches a class defined at the time those clients were compiled. In threwalasses can be

added without forcing existing clients that use these functions to be recompiled.

1.4. UsingExtension Input Devices

A client that wishes to access an input device does so through the library functions defined in the
following sections.A typical sequence of requests that a client wouldensks 6llows:

. XListinputDevices - lists all of the aailable input degices. Fronthe information
returned by this request, determine whether the desired input device is attached to the
server For a description of th&ListinputDevices request, see the section entitled “List-
ing Available Devices.

. XOpenDevice- requests that the server open the device for access by this client. This
request returns akDevice structure that is used by most other input extension requests to
identify the specified déce. For a description of th&XOpenDevicerequest, see the sec-
tion entitled “Enabling and Disabling Extension Devites.

. Determine theent types andwent classes heeded to select the desired input extension
evants, and identify them when thare receied. Thisis done via macros whose name

corresponds to the desiregknt, for exampleDeviceKeyPress For a description of these
macros, see the section entitled “Selecting Extension Device Events.

. XSelectExtensionEvent- selects the desiredrents from the serverFor a description of
the XSelextExtensionEventrequest, see the section entitled “Selecting Extension Device
Events.

. XNextEvent — receves the next gailable event. Thisis the coreXNextEvent function

provided by the standard X libarary.

Other requests are defined to grab and focus extension devices, to changs, thatitok, or
modifier mappings, to control the propagation of input extensiemt® to get motion history
from an extension device, and to send input extensiamsto another client. These functions
are described in the following sections.

2. Library Extension Requests

Extension input devices are accessed by client programs through the usepaitoeol requests.
The following requests are provided as extensions ta Xdimstants and structures referenced by
these functions may be found in the f#e§l1/extensions/Xl.h>and<X11/extensions/XIn-

put.h>, which are attached to this document as Appendix A.

The library will returnNoSuchExtensionif an extension request is made to a server that does not
support the input extension.

Input extension requests cannot be used to access ibXakd and X pointer devices.

2.1. Window M anager Functions

This section discusses the following X Input Extension Winbltanager topics:
. Changing the core devices

. Event synchronization and core grabs
. Extension actie gabs

. Passvely grabbing a ky

. Passvely grabbing a button

. Thawing a device

. Controlling device focus

. Controlling device feedback

. Ringing a bell on an input device

. Controlling device encoding

. Controlling button mapping

. Obtaining the state of a device

2.1.1. Changinghe Core Devices

These functions are provided to change which physical device is used as the X pointer or X
keyboard.

Note

Using these functions may change the characteristics of the aicesdeThenew

pointer device may hva a dfferent number of buttons from the old one, or the new
keyboard device may la a dfferent number of &ys or report a different range of
keycodes. Clienprograms may be running that depend on those characteristics.
example, a client program could allocate an array based on the number of buttons on
the pointer device and then use the button numbersedadributton events as

indices into that arrayChanging the core devices could cause such client programs

to behae improperly or to terminate abnormally if thignore theChangeDevi-

ceNotify event generated by these requests.

These functions change the ¥ykoard or X pointer device and generatexa@thangeDeviceNo-
tify event and aMappingNotify event. Thespecified device becomes thewé keyboard or X
pointer deice. Thelocation of the core device does not change as a result of this request.

These requests fail and retulitreadyGrabbed if either the specified device or the core device it
would replace are grabbed by some other client.yTaiéand returnGrabFrozen if either
device is frozen by the ae#i gab of another client.

These requests fail withBadDeviceerror if the specified device isvaid, has not previously
been opened viXOpenDevice or is rot supported as a core device by the server implementa-
tion.

Once the device has successfully replaced one of the core devices, it is treated as a core device
until it is in turn replaced by anoth@hangeDevicerequest or until the server terminates. The
termination of the client that changed the device will not cause it to change back. Attempts to use
the XCloseDevicerequest to close the weaore device will fail with aBadDeviceerror.

To change which physical device is used as theeybkard, use thXChangeKeyboardDevice
function. Thespecified device must support input cl&sys (as reported in theistinputDe-
vicesrequest) or the request will fail withBadMatch error.

int XChangekeyboardDeice (display, device
Display *display,
XDevice *device

display Specifies the connection to the X server.
device Specifies the desired device.

If no error occursXChangeKeyboardDevicereturnsSuccess A ChangeDeviceNotifyevent
with the request field set tdewKeyboard is sent to all clients selecting thaeat. A Mapping-
Notify event with the request field set MappingKeyboard is sent to all clients. The requested
device becomes the elboard, and the oldegboard becomesvailable as an extension input
device. Thefocus state of the mekeyboard is the same as the focus state of the oleydard.

XChangeKeyboardDevicecan generatédlreadyGrabbed, BadDevice BadMatch, and
GrabFrozen errors.

To change which physical device is used as the X pginsertheXChangePointerDevicefunc-
tion. Thespecified device must support input clasduators (as reported in th&ListinputDe-
vicesrequest) and report at leasiotaxes of motion, or the request will fail with BadMatch

error. If the specified device reports more than twes, the tvo gecified in the xaxis and yaxis
arguments will be used. Data from other valuators on the device will be ignored.

If the specified device reports absolute positional information, and the server implementation does
not allov such a device to be used as the X poijritex request will fail with @8adDeviceerror.

int XChangePointerDéce (display, device xaxis, yaxis)

Display *display,
XDevice *device
int xaxis;
int yaxis,
display Specifies the connection to the X server.
device Specifies the desired device.
xaxis Specifies the zero-based imd# the axis to be used as the x-axis of the pointer
device.
yaxis Specifies the zero-based ind# the axis to be used as the y-axis of the pointer
device.

If no error occursXChangePointerDevicereturnsSuccess A ChangeDeviceNotifyevent

with the request field set tdewPointer is sent to all clients selecting thaest. A Mapping-
Notify event with the request field set MappingPointer is sent to all clients. The requested
device becomes the X pointend the old pointer becomegatable as an extension input device.

XChangePointerDevicecan generatélreadyGrabbed, BadDevice BadMatch, and
GrabFrozen errors.

2.1.2. Ewent Synchronization and Coe Grabs

Implementation of the input extension requires an extension of the meanireptoynchroniza-
tion for the core grab requests. This is necessary in order vowsifaow managers to freeze all
input devices with a single request.

The core grab requests require a pointer_mode eyimbard _mode gument. Theneaning of

these modes is changed by the inpiésion. Br the XGrabPointer and XGrabButton

requests, pointer_mode controls synchronization of the pointer devicegyirwikd_mode con-

trols the synchronization of all other inpuwvies. for the XGrabKeyboard and XGrabKey

requests, pointer_mode controls the synchronization of all input devices, excepteyimxré,

while keyboard_mode controls the synchronization of tegbkard. Wherusing one of the core

grab requests, the synchronization of extension devices is controlled by the mode specified for the
device not being grabbed.

2.1.3. ExtensionmActive Grabs

Active gabs of extension devices are supported viaXtGeabDevice function in the same way
that core devices are grabbed using the ¥@eabKeyboard function, except that an extension
input device is passed as a function paramdiiee XUngrabDevice function allows a previous
active gab for an extension device to be released.

Passive gabs of buttons andelys on extension devices are supported via X@rabDeviceBut-
ton and XGrabDeviceKey functions. Thespassie gabs are released via tiké&JngrabDe-
viceKey and XUngrabDeviceButton functions.

To gab an extension device, use @&rabDevice function. Thedevice must hae previously
been opened using thpenDevicefunction.

int XGrabDevice (display, device grab_window owner_eventsevent_countevent_list,
this_device_modether_device_moddime)
Display *display,
XDevice *device
Windowgrab_window
Bool owner_events
int event_count
XEventClass &went_list,
int this_device_mode
int other_device_mode

Timetime;
display Specifies the connection to the X server.
device Specifies the desired device.

grab_window Specifies the ID of a winaoassociated with the device specified abo
owner_events Specifies a boolean value of eitligue or False.
ewvent_count Specifies the number of elements in theng _list array.

ewent_list Specifies a pointer to a list ofent classes that indicate whicheats the client
wishes to recee. These eent classes must kia keen obtained using the device
being grabbed.

this_device_mode
Controls further processing ofents from this deice. You can pass one of these
constantsGrabModeSync or GrabModeAsync.

other_device_mode
Controls further processing ofents from all other déces. You can pass one of
these constant$&srabModeSync or GrabModeAsync.

time Specifies the time. This may be either a timestamp expressed in milliseconds or
CurrentTime .

XGrabDevice actively grabs an extension input device and genef2msceFocusinand
DeviceFocusOutevents. Furtheinput events from this device are reported only to the grabbing
client. Thisfunction orerrides ary previous actte gab by this client for this device.

The event_list parameter is a pointer to a list véet classes. This list indicates whicveets the
client wishes to rece¢ while the grab is acte. If owner_eents isFalse, input ezents from this
device are reported with respect to grab_wimdod are reported only if specified iveat_list.

If owner_events isTr ue, then if a generatedrent would normally be reported to this client, it is
reported normally Otherwise, the went is reported with respect to the grab_wwwvdamd is only
reported if specified invent_list.

The this_device_mode argument controls the further processingr$ érom this device, and
the other_device_mode argument controls the further processing ofwept# ffom all other
devices.

. If the this_device_mode argumen@gsabModeAsync, device event processing continues
normally; if the device is currently frozen by this client, then processing of dexdots és
resumed. Ithe this_deice_mode ajument isGrabModeSync, the state of the grabbed

device (as seen by client applications) appears to freeze, and no further denicaue
generated by the server until the grabbing client issues a rele@silogvDeviceEvents
call or until the device grab is released. Actual device inparte are not lost while the
device is frozen; theare simply queued for later processing.

. If the other_device_mode GrabModeAsync, event processing from other input devices
is unaffected by actétion of the grab If other_device_mode i&rabModeSync, the state
of all devices except the grabbed device (as seen by client applications) appears to freeze,
and no furtherwents are generated by the server until the grabbing client issues a releasing
XAllowEvents or XAllowDeviceEventscall or until the device grab is released. Actual
evants are not lost while the other devices are frozer;areesimply queued for later pro-
cessing.

XGrabDevice fails on the following conditions:
. If the device is acotely grabbed by some other client, it returkiseadyGrabbed.
. If grab_windav is not viewable, it returnsGrabNotViewable.

. If the specified time is earlier than the last-grab-time for the specified device or later than
the current X server time, it retur@ablnvalidTime . Otherwise, the last-grab-time for
the specified device is set to the specified timeGumuentTime is replaced by the current
X server time.

. If the device is frozen by an aaigab of another client, it returrGrabFrozen.

If a grabbed device is closed by a client while arvadajiab by that client is in effect, that ai
grab will be released. Ampassve gabs established by that client will be released. If the device
is frozen only by an ast gab of the requesting client, it is thawed.

XGrabDevice can generat®adClass BadDevice BadValue, and BadWindow errors.

To release a grab of an extension device, usXthegrabDevice function.

int XUngrabDevicedisplay, device time)

Display *display;
XDevice *device
Timetime;
display Specifies the connection to the X server.
device Specifies the desired device.
time Specifies the time. This may be either a timestamp expressed in milliseconds, or

CurrentTime .

XUngrabDevice allows a client to release an extension input device andusued eents if

this client has it grabbed from eith&éGrabDevice or XGrabDeviceKey. If any aher devices

are frozen by the gralXUngrabDevice thaws them. This function does not release the device
and ay queued eents if the specified time is earlier than the last-device-grab time or is later than
the current X server time. It also generdbesiiceFocusinand DeviceFocusOutevents. TheX

server automatically performs &uUngrabDevice if the event windaw for an actie device grab
becomes not vigable or if the client terminates without releasing the grab.

XUngrabDevice can generatBadDeviceerrors.

2.1.4. Rassvely Grabbing a Key

To passvely grab a single &y an an extension device, us¥GrabDeviceKey. That device must
have previously been opened using tK®penDevicefunction, or the request will fail with a
BadDeviceerror. If the specified device does not support input dkesss, the request will fail
with a BadMatch error.

int XGrabDevicekey(display, device keycode modifiers modifier_devicegrab_window
owner_eventsevent_countewent_list, this_device_modether_device_mode
Display *display,
XDevice *device
int keycode
unsigned inmodifiers
XDevice *modifier_device
Windowgrab_window
Bool owner_events
int event_count
XEventClass &went_list,
int this_device_mode
int other_device_mode

display Specifies the connection to the X server.

device Specifies the desired device.

keycode Specifies the éycode of the Ry that is to be grabbedrou can pass either the
keycode orAnyKey.

modifiers Specifies the set oelgmasks. Thisnask is the bitwise inclug OR of these

keymask bits:ShiftMask, LockMask, ControlMask , Mod1Mask,
Mod2Mask, Mod3Mask, Mod4Mask, and Mod5Mask.

You can also pas&nyMadifier , which is equiaent to issuing the grabel
request for all possible modifier combinations (including the combination of no
modifiers).

modifier_device
Specifies the device whose modifiers are to be used. If NULL is specified, the
core X leyboard is used as the modifier_device.

grab_window Specifies the ID of a winaoassociated with the device specified a0
owner_events Specifies a boolean value of eitligmue or False.
ewent_count Specifies the number of elements in thene_list array.

ewent_list Specifies a pointer to a list ofent classes that indicate whicheats the client
wishes to recse.

this_device_mode
Controls further processing ofents from this deice. You can pass one of these
constantsGrabModeSync or GrabModeAsync.

other_device_mode
Controls further processing ofents from all other daces. You can pass one of
these constant$&rabModeSync or GrabModeAsync.

XGrabDeviceKey is analogous to the codGrabKey function. Itcreates an explicit passi
grab for a ky an an etension deice. TheXGrabDeviceKey function establishes a paasigab

on a deice. Consequentjyn the future,

. IF the device is not grabbed and the specifiglhich itself can be a modifieel is log-
ically pressed when the specified modifieyklogically are down on the specified modifier
device (and no otherels ae down),

. AND no other modifier &ys logically are down,

. AND EITHER the grab windwe is an ancestor of (or is) the focus windar the grab win-
dow is a descendent of the focus wind@nd contains the pointer,

. AND a passie gab on the same device angykiombination does not exist onyaancestor
of the grab windw,

. THEN the device is aatély grabbed, as foKGrabDevice, the last-device-grab time is set
to the time at which thegly was pressed (as transmitted in eviceKeyPressvent), and
the DeviceKeyPressevent is reported.

The interpretation of the remaining arguments is aXferabDevice. The actve gab is termi-
nated automatically when the logical state of the device has the speeyfieddased (indepen-
dent of the logical state of the modifieryk).

Note that the logical state of a device (as seen by means of the X protocol) may lag the physical
state if devicewent processing is frozen.

A modifier of AnyModifier is equialent to issuing the request for all possible modifier combina-
tions (including the combination of no modifiers). It is not required that all modifiers specified
have aurrently assigneddycodes. Akey of AnyKey is equvalent to issuing the request for all
possible kycodes. Otherwisdhe ley nust be in the range specified by miay¢ode and
max_leycode in the information returned by tK&istinputDevices function. Ifit is not within

that range XGrabDeviceKey generates 8adValue error.

XGrabDeviceKey generates 8adAccesserror if some other client has issueX@rabDe-
viceKey with the same device angkmbination on the same wingo When usingAnyMod-
ifier or AnyKey, the request fails completely and the X server generaBaslAccesserror, and
no grabs are established if there is a conflicting grab foc@mbination.

XGrabDeviceKey returnsSuccesaipon successful completion of the request.

XGrabDeviceKey can generatBadAccess BadClass BadDevice BadMatch, BadValue,
and BadWindow errors.

To release a pas& gab of a single &y m an etension device, usEUngrabDeviceKey.

int XUngrabDeviceley(display, device keycode modifiers modifier_deviceungrab_windowy
Display *display;
XDevice *device
int keycode
unsigned inmodifiers
XDevice *modifier_device
Windowungrab_window

display Specifies the connection to the X server.

device Specifies the desired device.

keycode Specifies the &ycode of the Ry tat is to be ungrabbed&ou can pass either the
keycode orAnyKey.

modifiers Specifies the set oegmasks. Thignask is the bitwise incluge OR of these

keymask bits:ShiftMask, LockMask, ControlMask , Mod1Mask,
Mod2Mask, Mod3Mask, Mod4Mask, and Mod5Mask.

You can also pasgnyMadifier , which is equiaent to issuing the ungralek
request for all possible modifier combinations (including the combination of no

modifiers).
modifier_device Specifies the device whose modifiers are to be used. If NULL is speci-
fied, the core X &yboard is used as the modifier_device.
ungrab_window Specifies the ID of a winawassociated with the device specified aho

XUngrabDeviceKey is analogous to the cop@UngrabKey function. Itreleases an explicit pas-
sive gab for a ley o an etension input device.

XUngrabDeviceKey can generatBadAlloc, BadDevice BadMatch, BadValue, and Bad-
Window errors.

2.1.5. Rssvely Grabbing a Button

To establish a passe gab for a single button on an extension device XSeabDeviceButton.
The specified device mustJgpeviously been opened using tk®penDevicefunction, or the
request will fail with aBadDeviceerror. If the specified device does not support input diags
tons, the request will fail with 8adMatch error.

10

int XGrabDeviceButtordisplay, device button, modifiers modifier_device grab_window
owner_eventsevent_countewent_list, this_device_modether _device_mode
Display *display,
XDevice *device
unsigned inbutton;
unsigned intnodifiers
XDevice *modifier_device
Windowgrab_window
Bool owner_events
int event_count
XEventClass &went_list,
int this_device_mode
int other_device_mode

display Specifies the connection to the X server.

device Specifies the desired device.

button Specifies the code of the button that is to be grabled.can pass either the
button or AnyButton .

modifiers Specifies the set oegmasks. Thignask is the bitwise incluge OR of these

keymask bits:ShiftMask, LockMask, ControlMask , Mod1Mask,
Mod2Mask, Mod3Mask, Mod4Mask, and Mod5Mask.

You can also pasényMadifier , which is equialent to issuing the grab request
for all possible modifier combinations (including the combination of no modi-
fiers).

modifier_device
Specifies the device whose modifiers are to be used. If NULL is specified, the
core X leyboard is used as the modifier_device.

grab_window Specifies the ID of a windoassociated with the device specified ao
owner_events Specifies a boolean value of eitfigue or False.
ewent_count Specifies the number of elements in thene list array.

ewent_list Specifies a list ofvent classes that indicates which devieergs are to be
reported to the client.

this_device_mode
Controls further processing ofents from this deice. You can pass one of these
constantsGrabModeSync or GrabModeAsync.

other_device_mode
Controls further processing ofents from all other déces. You can pass one of
these constant$&drabModeSync or GrabModeAsync.

XGrabDeviceButton is analogous to the codéGrabButton function. Itcreates an explicit
passve gab for a button on an extension inputide. Becausghe server does not track exten-
sion devices, no cursor is specified with this requestthe same reason, there is no confine_to
parameter The device must iva reviously been opened using tK®penDevicefunction.

The XGrabDeviceButton function establishes a passigab on a déce. Consequentjyn the
future,

11

. IF the device is not grabbed and the specified button is logically pressed when the specified
modifier keys logically are down (and no other buttons or modifeyslkare down),

. AND EITHER the grab windae is an ancestor of (or is) the focus winddOR the grab
window is a descendent of the focus wind@nd contains the pointer,

. AND a passie gab on the same device and butt@y/kombination does not exist on any
ancestor of the grab windop

. THEN the device is actely grabbed, as foKGrabDevice, the last-grab time is set to the
time at which the button was pressed (as transmitted iDeélEeButtonPressevent), and
the DeviceButtonPressevent is reported.

The interpretation of the remaining arguments is aXferabDevice. The actve gab is termi-
nated automatically when logical state of the device has all buttons released (independent of the
logical state of the modifiereks).

Note that the logical state of a device (as seen by means of the X protocol) may lag the physical
state if devicewent processing is frozen.

A modifier of AnyModifier is equialent to issuing the request for all possible modifier combina-
tions (including the combination of no modifiers). It is not required that all modifiers specified
have aurrently assigneddycodes. Abutton of AnyButton is equialent to issuing the request for
all possible hbttons. Otherwisédt is not required that the specified button be assigned to a physi-
cal button.

XGrabDeviceButton generates 8adAccesserror if some other client has issueX@rabDe-
viceButton with the same device and button combination on the same winden using
AnyModifier or AnyButton, the request fails completely and the X server generdadeslAc-
cesserror and no grabs are established if there is a conflicting grabyfoomatination.

XGrabDeviceButton can generat®adAccess BadClass BadDevice BadMatch, BadValue,
and BadWindow errors.

To release a pas@ gab of a button on an extension device, ¥emgrabDeviceButton.

12

int XUngrabDeviceButtortisplay, device button, modifiers modifier_deviceungrab_windowy
Display *display;
XDevice *device
unsigned inbutton;
unsigned inmodifiers
XDevice *modifier_device
Windowungrab_window

display Specifies the connection to the X server.

device Specifies the desired device.

button Specifies the code of the button that is to be ungrab¥eud can pass either a
button or AnyButton .

modifiers Specifies the set oegmasks. Thignask is the bitwise incluge OR of these

keymask bits:ShiftMask, LockMask, ControlMask , Mod1Mask,
Mod2Mask, Mod3Mask, Mod4Mask, and Mod5Mask.

You can also pasgnyMadifier , which is equiaent to issuing the ungralek
request for all possible modifier combinations (including the combination of no
modifiers).

modifier_device
Specifies the device whose modifiers are to be used. If NULL is specified, the
core X leyboard is used as the modifier_device.

ungrab_window
Specifies the ID of a winawoassociated with the device specified abo

XUngrabDeviceButton is analogous to the coddUngrabButton function. Itreleases an
explicit passve gab for a button on an extensiorvibe. Thatdevice must hze previously been
opened using th¥OpenDevicefunction, or aBadDeviceerror will result.

A modifier of AnyModifier is equialent to issuing the request for all possible modifier combina-
tions (including the combination of no modifiers).

XUngrabDeviceButton can generatBadAlloc, BadDevice BadMatch, BadValue, and Bad-
Window errors.

2.1.6. Thawinga Device

To dlow further eents to be processed when a device has been frozeKAlise/De-
viceEvents

13

int XAllowDeviceEventsdisplay, device event_modetime)
Display *display;
XDevice *device
int event_mode

Timetime;
display Specifies the connection to the X server.
device Specifies the desired device.

event_mode Specifies theveent mode. You can pass one of these constaitsyncThisDe-
vice, SyncThisDevice AsyncOtherDevices ReplayThisDevice AsyncAll, or
SyncAll.

time Specifies the time. This may be either a timestamp expressed in milliseconds, or
CurrentTime .

XAllowDeviceEventsreleases some queuegbsts if the client has caused a device to freeze. It
has no effect if the specified time is earlier than the last-grab time of the most revergrabti

for the client and device, or if the specified time is later than the current X server time. The fol-
lowing describes the processing that occurs depending on what constant you pass to the
event_mode argument:

. AsyncThisDevice

If the specified device is frozen by the clienverd processing for that continues as usual.
If the device is frozen multiple times by the client on behalf of multiple separate grabs,
AsyncThisDevicethaws for all. AsyncThisDevicehas no effect if the specified device is
not frozen by the client, but the device need not be grabbed by the client.

. SyncThisDevice

If the specified device is frozen and aely grabbed by the clientyent processing for that
device continues normally until the nexayka button event is reported to the client. At

this time, the specified device again appears to freeze. niifehe reportedwent

causes the grab to be released, the specified device does not 8geeEhisDevicehas

no effect if the specified device is not frozen by the client or is not grabbed by the client.

. ReplayThisDevice

If the specified device is aedly grabbed by the client and is frozen as the result of an

evant having been sent to the client (either from thesaiin of a GrabDeviceButton or

from a previousAllowDeviceEventswith modeSyncThisDevice but not from aGrab),

the grab is released and thag@ is completely reprocessed. This time, hesvethe

request ignores grpassve gabs at or abee {oward the root) the grab-windoof the grab

just released. The request has no effect if the specified device is not grabbed by the client
or if it is not frozen as the result of aveat.

. AsyncOtherDevices

If the remaining devices are frozen by the cliemeneprocessing for them continues as

usual. Ifthe other devices are frozen multiple times by the client on behalf of multiple
separate grabg\syncOtherDevices" thaws’ for all. AsyncOtherDeviceshas no effect if

the devices are not frozen by the client, but those devices need not be grabbed by the client.

. SyncAll

If all devices are frozen by the clienteat processing (for all devices) continues normally
until the next button ordy event is reported to the client for a grabbed device, at which

14

time the devices again appear to freeze. Hewé the reported\ent causes the grab to
be released, then the devices do not freeze (buy ideice is still grabbed, then a subse-
quent @ent for it will still cause all devices to freezepyncAll has no effect unless all
devices are frozen by the client. Ifyattevice is frozen twice by the client on behalf of two
separate grabgyncAll "thaws" for both (but a subsequent freezeSgncAll will freeze
each device only once).

. AsyncAll

If all devices are frozen by the clienteat processing (for all devices) continues normally.
If any device is frozen multiple times by the client on behalf of multiple separate grabs,
AsyncAll “thaws “for all. If ary device is frozen twice by the client on behalf obteep-
arate grabsAsyncAll “ thaws’ for both. AsyncAll has no effect unless all devices are
frozen by the client.

AsyncThisDevice SyncThisDevice and ReplayThisDevicehave ro gfect on the processing of
events from the remaining deviceg\syncOtherDeviceshas no effect on the processing of
events from the specified dige. Whenthe e/ent_mode isSyncAll or AsyncAll, the device
parameter is ignored.

It is possible for seeral grabs of different devices (by the same or different clients) to e acti
simultaneously If a device is frozen on behalf of grgrab, no gent processing is performed for
the deice. Itis possible for a single device to be frozen becausevaefagrabs. In this case,
the freeze must be released on behalf of each grab bgénts ean again be processed.

XAllowDeviceEventscan generatBadDeviceand BadValue errors.

2.1.7. Contolling Device Focus

The current focus windofor an extension input device can be determined using@etDe-
viceFocusfunction. Extensiomlevices are focused using tK&etDeviceFocudunction in the
same way that theeyboard is focused using the cof&etinputFocus function, except that a
device ID is passed as a function parame@ere additional focus statépllowKeyboard, is
provided for extension devices.

To get the current focus stateyeet state, and focus time of an extension device XisetDe-
viceFocus

15

int XGetDeviceFocuslisplay, device focus_returnrevert_to_return focus_time_returh
Display *display;
XDevice *device
Window *focus_return
int *revert_to_return
Time *focus_time_return

display Specifies the connection to the X server.
device Specifies the desired device.

focus_return Specifies the address of a variable into which the server can return the ID of the
window that contains the device focus or one of the constdorte, Pointer-
Root, or FollowKeyboard .

revert_to_return
Specifies the address of a variable into which the server can return the current
revert_to status for the device.

focus_time_return
Specifies the address of a variable into which the server can return the focus time
last set for the device.

XGetDeviceFocusreturns the focus state, theed-to state, and the last-focus-time for an exten-
sion input device.

XGetDeviceFocuscan generat®adDeviceand BadMatch errors.
To st the focus of an extension device, ¥&etDeviceFocus

int XSetDeviceFocuslisplay, device focus rewert_to, time)
Display *display,
XDevice *device
Windowfocus

int revert_to;
Timetime;
display Specifies the connection to the X server.
device Specifies the desired device.
focus Specifies the ID of the wineoto which the devices focus should be set. This

may be a winde ID, or PointerRoot, FollowKeyboard, or None.

revert_to Specifies to which winde the focus of the device shouldregt if the focus win-
dow becomes not vigable. Oneof the following constants may be passed:
RevertToParent, RevertToPointerRoot, RevertToNone, or RevertToFol-
lowKeyboard.

time Specifies the timeYou can pass either a timestamp, expressed in milliseconds,
or CurrentTime .

XSetDeviceFocushanges the focus for an extension input device and the last-focus-change-
time. Ithas no effect if the specified time is earlier than the last-focus-change-time or is later than
the current X server time. Otherwise, the last-focus-change-time is set to the specified time. This
function causes the X server to genefdéviceFocusinand DeviceFocusOutevents.

16

The action taken by the server when this function is requested depends on the value of the focus
argument:

. If the focus argument ione, al input events from this device will be discarded until a
new focus windw is st. Inthis case, the vert_to argument is ignored.
. If the focus argument is a wingddD, it becomes the focus windmf the deice. Ifan

input event from the device would normally be reported to this wimdo to one of its infe-
riors, the gent is reported normallyOtherwise, thewent is reported relate o the focus
window.

. If the focus argument BointerRoot, the focus windw is dynamically taken to be the root
window of whatever screen the pointer is on at each inpudree. Inthis case, the vert to
argument is ignored.

. If the focus argument SollowKeyboard, the focus windw is dynamically taken to be
the same as the focus of the &&koard at each inputent.

The specified focus winelomust be vigvable at the timeXSetDeviceFocusds called. Other-
wise, it generates BadMatch error. If the focus windw later becomes not wigble, the X
server gauates the neert_to argument to determine theantocus windav.

. If the revert_to argument iRRevertToParent, the focus reerts to the parent (or the closest
viewable ancestor), and thewgeveat_to value is taken to bRevertToNone.
. If the revert_to argument iRRevertToPointerRoot, RevertToFollowKeyboard , or

RevertToNone, the focus reerts to that value.

When the focus kexrts, the X server generatBeviceFocuslinand DeviceFocusOutevents, but
the last-focus-change time is not affected.

XSetDeviceFocusan generatBadDevice BadMatch, BadValue, and BadWindow errors.

2.1.8. Contolling Device Feedback

To determine the current feedback settings of an extension input deviceGasEeedbackCon-
trol .

XFeedbackState * XGetFeedbackConulaplay, device num_feedbacks_retuyn
Display *display;,
XDevice *device
int *num_feedbacks_return

display Specifies the connection to the X server.

device Specifies the desired device.

num_feedbacks_return
Returns the number of feedbacks supported by the device.

XGetFeedbackControl returns a list oFeedbackStatestructures that describe the feedbacks
supported by the specifieduiiee. Thereas an XFeedbackStatestructure for each class of feed-
back. Thesare of variable length, but the first three members are common to all.

17

typedef struct {

XID class;
int length;
XID id;

} X FeedbackState;

The common members are as follows:

The class member identifies the class of feedback. It may be compared to constants defined
in the file <X11/extensions/Xl.l>. Currentlydefined feedback constants inclu#dsd-
FeedbackClass PtrFeedbackClass StringFeedbackClass IntegerFeedbackClass
LedFeedbackClassand BellFeedbackClass

The length member specifies the length offeedbackStatestructure and can be used by
clients to traerse the list.

The id member uniquely identifies a feedback fovargdevice and class. This allows a
device to support more than one feedback of the same class. Other feedbacks of other
classes or devices mayveahe same ID.

Those feedbacks egualent to those supported by the cosstboard are reported in clakbd-
Feedback using theXKbdFeedbackStatestructure, which is defined as follows:

typedef struct {

XID class;

int length;

XID id;

int click;

int percent;

int pitch;

int duration;

int led_mask;

int global_auto_repeat;
char auto_repeats[32];

} X KbdFeedbackState;

The additional members of théKbdFeedbackStatestructure report the current state of the
feedback:

The click member specifies theykclick volume and has a value in the range 0 (off) to 100
(loud).

The percent member specifies the bell volume and has a value in the range 0 (off) to 100
(loud).

The pitch member specifies the bell pitch in Hz. The range of the value is implementation-
dependent.

The duration member specifies the duration in milliseconds of the bell.

The led_mask member is a bit mask that describes the current state of up to 32 LEDs. A
value of 1 in a bit indicates that the corresponding LED is on.

18

. The global_auto_repeat member has a valusuddRepeatModeOnor AutoRepeat-
ModeOff.

. The auto_repeats member is a bit vectach bit set to 1 indicates that auto-repeat is
enabled for the correspondingyk The vector is represented as 32 bytes. Byte N (from 0)
contains the bits fordys 8N to 8N + 7, vith the least significant bit in the byte representing
key 8N.

Those feedbacks egalent to those supported by the core pointer are reported inRiids=ed-
back using theXPtrFeedbackStatestructure, which is defined as follows:

typedef struct {
XID class;
int length;
XID id;
int accelNum;
int accelDenom;
int threshold;

} X PtrFeedbackState;

The additional members of tiéPtrFeedbackStatestructure report the current state of the feed-
back:

. The accelNum member returns the numerator for the acceleration multiplier.
. The accelDenom member returns the denominator for the acceleration multiplier.
. The accelDenom member returns the threshold for the acceleration.

Integer feedbacks are those capable of displaying integer numbers and reporteXitethe
gerFeedbackStatestructure. Theninimum and maximum values that yhean display are
reported.

typedef struct {
XID class;
int length;
XID id;
int resolution;
int minVval;
int maxVal;
} X IntegerFeedbackState;

The additional members of théintegerFeedbackStatestructure report the capabilities of the
feedback:

. The resolution member specifies the number of digits that the feedback can display.
. The minVal member specifies the minimum value that the feedback can display.
. The maxVal specifies the maximum value that the feedback can display.

19

String feedbacks are those that can display character information and are reported via the
XStringFeedbackStatestructure. Clientset these feedbacks by passing a li®fSymsto
be displayed. ThXGetFeedbackControl function returns the set ol symbols that the feed-
back can displayas vell as the maximum number of symbols that can be displayed. The
XStringFeedbackStatestructure is defined as follows:

typedef struct {

XID class;

int length;

XID id;

int max_symbols;

int num_syms_supported;

KeySym *syms_supported;
} X StringFeedbackState;

The additional members of théStringFeedbackStatestructure report the capabilities of the
feedback:

. The max_symbols member specifies the maximum number of symbols that can be dis-
played.

. The syms_supported member is a pointer to the list of supported symbols.
. The num_syms_supported member specifies the length of the list of supported symbols.

Bell feedbacks are those that can generate a sound and are reportecKBaltfreedbackState
structure. Somamplementations may support a bell as part EbaFeedback feedback. Class
BellFeedbackis provided for implementations that do not choose to do so and for devices that
support multiple feedbacks that can produce sound. The meaning of the members is the same as
that of the corresponding fields in ti&bdFeedbackStatestructure.

typedef struct {
XID class;
int length;
XID id;
int percent;
int pitch;
int duration;
} X BellFeedbackState;

Led feedbacks are those that can generate a light and are reporteddliadreedbackState
structure. Upo 32 lights per feedback are supported. Each bit in led_mask corresponds to one
supported light, and the corresponding bit in led_values indicates whether that light is currently
on (1) or of (0). Somamplementations may support leds as part KbdFeedback feedback.
ClassLedFeedbackis provided for implementations that do not choose to do so and for devices
that support multiple led feedbacks.

20

typedef struct {
XID class;
int length;
XID id;
Mask led_values;
Mask led_mask;
} X LedFeedbackState;

XGetFeedbackControl can generatBadDeviceand BadMatch errors.

To free the information returned by tk&etFeedbackControl function, useXFreeFeedback-
List.

void XFreeFeedbackLidtft)
XFeedbackStatelist;

list Specifies the pointer to theedbackStatestructure returned by a previous call
to XGetFeedbackControl.

XFreeFeedbackListfrees the list of feedback control information.

To change the settings of a feedback on an extension devicKQlemngeFeedbackControl

This function modifies the current control values of the specified feedback using information
passed in the appropriaxd-eedbackControl structure for the feedback. Which values are mod-
ified depends on the valuemask passed.

int XChangeFeedbackContrdigplay, device valuemaskvalue)
Display *display,
XDevice *device
unsigned longaluemask
XFeedbackControlvalue;

display Specifies the connection to the X server.

device Specifies the desired device.

valuemask Specifies one value for each bit in the mask (least to most significant bit). The
values are associated with the feedbacks for the specified device.

value Specifies a pointer to théFeedbackControl structure.

XChangeFeedbackControlcontrols the device characteristics described by<ffeedback-
Control structure. Theres anXFeedbackControl structure for each class of feedback. These
are of variable length, but the first three members are common to all and are as follows:

21

typedef struct {
XID class;
int length;
XID id;

} X FeedbackControl;

Feedback claskbdFeedback controls feedbacks eqaent to those provided by the core
keyboard using th&KbdFeedbackControl structure, which is defined as follows:..

typedef struct {

XID class;

int length;

XID id;

int click;

int percent;

int pitch;

int duration;

int led_mask;

int led_value;

int key;

int auto_repeat_mode;
} X KbdFeedbackControl;

This class controls the device characteristics described bBykthdFeedbackControl structure.
These include thedy click_percent, global_auto_repeat, and individesd &to-repeat. ¥lid
modes arAutoRepeatModeOn AutoRepeatModeOff, and AutoRepeatModeDefault

Valid masks are as follows:

#define DvKeyClickPercent (1L << 0)
#define DvPercent (1L << 1)
#define DvPitch (1L << 2)
#define DvDuration (1L << 3)
#define DvlLed (AL << 4)
#define DvLedMode (1L << 5)
#define DvKey (1L << 6)
#define DvAutoRepeatMode (IL<<7)

Feedback clasBtrFeedback controls feedbacks eqalent to those provided by the core pointer
using thePtrFeedbackControl structure, which is defined as follows:

22

typedef struct {
XID class;
int length;
XID id;
int accelNum;
int accelDenom;
int threshold;

} X PtrFeedbackControl;

Which values are modified depends on the valuemask passed.
Valid masks are as follows:

#define DvAccelnum (1L << 0)
#define DvAccelDenom (1L << 1)
#define DvThreshold (1L << 2)

The acceleration, expressed as a fraction, is a multiplier feemrent. For example, specifying

3/1 means that the device wes three times as fast as normal. The fraction may be rounded arbi-
trarily by the X server Acceleration takes effect only if the deviceveonore than threshold

pixels at once and applies only to the amount beyond the value in the threghalém@tr Setting
a\alue to -1 restores the dedt. Thevalues of the accelNumerator and threshold fields must be
nonzero for the pointer values to be set. Otherwise, the parameters will be uncharggtide Ne
values generate BadValue error, as aes a zero value for the accelDenominator field.

This request fails with 8adMatch error if the specified device is not currently reporting redati
motion. Ifa device that is capable of reporting both relatend absolute motion has its mode
changed fronRelative to Absolute by anXSetDeviceModerequest, valuator control values
will be ignored by the server while the device is in that mode.

Feedback clasmtegerFeedbackcontrols integer feedbacks displayed on input devices and are
reported via théntegerFeedbackControl structure, which is defined as follows:

typedef struct {
XID class;
int length;
XID id;
int int_to_display;
} X IntegerFeedbackControl;

Valid masks are as follows:

#define Dvinteger (1L << 0)

Feedback clasStringFeedback controls string feedbacks displayed on input devices and
reported via thestringFeedbackControl structure, which is defined as follows:

23

typedef struct {

XID class;

int length;

XID id;

int num_leysyms;

KeySym *syms_to_display;
} X StringFeedbackControl;

Valid masks are as follows:

#define DvString (1L << 0)

Feedback clasBellFeedbackcontrols a bell on an input device and is reported vidBtid-eed-

backControl structure, which is defined as follows:

typedef struct {
XID class;
int length;
XID id;
int percent;
int pitch;
int duration;
} X BellFeedbackControl;

Valid masks are as follows:

#define DvPercent (1L << 1)
#define DvPitch (1L << 2)
#define DvDuration (AL << 3)

Feedback classedFeedbackcontrols lights on an input device and are reported vid ¢ae

FeedbackControl structure, which is defined as follows:

typedef struct {
XID class;
int length;
XID id;
int led_mask;
int led_values;
} X LedFeedbackControl;

Valid masks are as follows:

24

#define DvlLed (1L << 4)
#define DvLedMode (1L << 5)

XChangeFeedbackControlcan generatBadDevice BadFeedBack BadMatch, and Bad-
Value errors.

2.1.9. Ringinga Bell on an Input Device
To ring a bell on an extension input device, Xd2eviceBell.

int XDeviceBelldisplay, device feedbackclasdeedbackidpercen)
Display *display,
XDevice *device
XID feedbackclasfeedbackid

int percent
display Specifies the connection to the X server.
device Specifies the desired device.
feedbackclass Specifies the feedbackclasglid values areKbdFeedbackClassand BellFeed-
backClass
feedbackid Specifies the ID of the feedback that has the bell.
percent Specifies the volume in the range -100 (quiet) to 100 percent (loud).

XDeviceBellis analogous to the codXBell function. ltrings the specified bell on the specified
input device feedback, using the specifietline. Thespecified volume is relai to the base
volume for the feedback. If the value for the percent argument is not in the range -100 to 100
inclusive, a BadValue error results. The volume at which the bell rings when the percent argu-
ment is honngative is:

base - [(base * percent) / 100] + percent
The volume at which the bell rings when the percent argumengéveis:
base + [(base * percent) / 100]

To change the base volume of the bell, ¥&hangeFeedbackControl
XDeviceBell can generat®adDeviceand BadValue errors.

2.1.10. Contolling Device Encoding

To get the ley mapping of an extension device that supports input days, use XGetDe-
viceKeyMapping.

25

KeySym * XGetDevicekeyMapping(display, device first_keycode wantedkeycode count
keysyms_per dycode_return)
Display *display,
XDevice *device
KeyCodefirst_keycode_wanteq
int keycode_count
int *keysyms_per dycode_return
display Specifies the connection to the X server.
device Specifies the desired device.

first_keycode_wanted
Specifies the firstdycode that is to be returned.

keycode_countSpecifies the number oélcodes that are to be returned.

keysyms_per_dycode_return
Returns the number oklgsyms per kycode.

XGetDeviceKeyMapping is analogous to the condGetKeyboardMapping function. It
returns the symbols for the specified numbereytides for the specified extension device.

XGetDeviceKeyMapping returns the symbols for the specified numbereytides for the spec-
ified extension device, starting with the specifiegckhde. Thdirst _keycode wanted must be
greater than or equal to mirycode as returned by thé_ istinputDevices request (else Bad-
Value error results). The following value:

first_keycode wanted +dycode_count — 1

must be less than or equal to maydode as returned by théListinputDevices request (else a
BadValue error results).

The number of elements in theygyms list is as follows:
keycode_count * kysyms_per_&ycode_return

And KEYSYM number N (counting from zero) foeycode K has an inagcounting from zero),
in keysyms, of the following:

(K - first_keycode_wanted) * &ysyms_per_&ycode_return + N

The keysyms_per_&ycode_return value is chosen arbitrarily by the server to be large enough to
report all requested symbolg. special KEYSYM value oNoSymbol is used to fill in unused
elements for individualdycodes.

To free the data returned by this function, X$eee.

If the specified device has not first been opened by this cliedd@menDevice this request will
fail with a BadDeviceerror. If that device does not support input cl&sys, this request will
fail with a BadMatch error.

XGetDeviceKeyMapping can generatBadDevice BadMatch, and BadValue errors.

To change the &board mapping of an extension device that supports inputkiass use
XChangeDeviceKeyMapping

26

int
XChangeDeviceKyMapping(isplay, device first_keycode keysyms_per dycode keysyms
num_codek
Display *display,
XDevice *device
int first_lkeycode
int keysyms_per dycode
KeySym *keysyms
int num_codes

display Specifies the connection to the X server.

device Specifies the desired device.
first_keycode Specifies the firstdycode that is to be changed.

keysyms_per dycode
Specifies the &ysyms that are to be used.

keysyms Specifies a pointer to an array @ykyms.
num_codes Specifies the number oélccodes that are to be changed.

XChangeDeviceKeyMappingis analogous to the codChangeKeyboardMapping function.
It defines the symbols for the specified numbereyt&des for the specified extensiasoard
device.

If the specified device has not first been opened by this cliet@penDevice this request will
fail with a BadDeviceerror. If the specified device does not support input dkasss, this
request will fail with aBadMatch error.

The number of elements in theysyms list must be a multiple oéisyms_per_&ycode. Other
wise, XChangeDeviceKeyMappinggenerates 8adLength error The specified first_dycode
must be greater than or equal to the méyckde value returned by theastinputDevices

request, or this request will fail withBadValue error. In addition, if the following expression is
not less than the maxeycode value returned by théstinputDevices request, the request will
fail with a BadValue error:

first_keycode + (num_codes Eisyms_per_g&ycode) - 1

XChangeDeviceKeyMappingcan generat®adAlloc, BadDevice BadMatch, and BadValue
errors.

To dbtain the leycodes that are used as modifiers on an extension device that supports input class
Keys, use XGetDeviceModifierMapping.

XModifierKeymap * XGetDeviceModifierMappingjsplay, device
Display *display,
XDevice *device

display Specifies the connection to the X server.
device Specifies the desired device.

XGetDeviceModifierMapping is analogous to the codéGetModifierMapping function. The
XGetDeviceModifierMapping function returns a newly creatéModifierKeymap structure

27

that contains thedys being used as modifiers for the specifiedicke Thestructure should be
freed after use witiKFreeModifierMapping . If only zero values appear in the set foy amodi-
fier, that modifier is disabled.

XGetDeviceModifierMapping can generatBadDeviceand BadMatch errors.

To st which leycodes are to be used as modifiers for an extension devicéSesPeviceModi-
fierMapping .

int XSetDeviceModifierMappinglisplay, device modmay)
Display *display;
XDevice *device
XModifierKeymap *modmap

display Specifies the connection to the X server.
device Specifies the desired device.
modmap Specifies a pointer to théModifierKeymap structure.

XSetDeviceModifierMapping is analogous to the codSetModifierMapping function. The
XSetDeviceModifierMapping function specifies thegycodes of the &ys, if ary, that are to be
used as modifiersA zero value means that neksould be used. No twarguments can he
the same nonzeraicode alue. OtherwiseXSetDeviceMaodifierMapping generates 8ad-
Value error. There are eight modifiers, and the modifiermap member ofkhadifierKeymap
structure contains eight sets of magyiermod leycodes, one for each modifier in the order
Shift, Lock, Control, Mod1, Mod2, Mod3, Mod4, and Mod5. Only nonzero kycodes hee
meaning in each set, and zerytodes are ignored. In addition, all of the nonzexykdes
must be in the range specified by mieydode and max dycode reported by th¥ListinputDe-
vicesfunction. OtherwiseXSetModifierMapping generates 8adValue error. No keycode
may appear twice in the entire map. Otherwise, it generddesdalue error.

A X server can impose restrictions onshmodifiers can be changed, for example, if certaysk

do not generate up transitions in hardware or if multiple modiéigs &e not supported. If some
such restriction is violated, the status repliiappingFailed, and none of the modifiers are
changed. Ithe nev keycodes specified for a modifier differ from those currently defined and any
(current or new) &ys for that modifier are in the logically down state, the status rephajs
pingBusy, and none of the modifiers are changetsSetModifierMapping generates a
DeviceMappingNotify event on aMappingSuccessstatus.

XSetDeviceModifierMapping can generat®adAlloc, BadDevice BadMatch, and BadValue
errors.

2.1.11. Contolling Button Mapping
To =t the mapping of the buttons on an extension deviceX8s&DeviceButtonMapping

28

int XSetDeviceButtonMappingd(splay, device map, nmap)
Display *display;
XDevice *device
unsigned chamag];

int nmap
display Specifies the connection to the X server.
device Specifies the desired device.
map Specifies the mapping list.
nmap Specifies the number of items in the mapping list.

XSetDeviceButtonMapping sets the mapping of the buttons on an extensiviceleIf it suc-

ceeds, the X server generateddeviceMappingNotify event, andXSetDeviceButtonMapping
returnsMappingSuccess Elements of the list are inged garting from one. The length of the

list must be the same ¥GetDeviceButtonMapping would return, or 8BadValue error results.

The inde is a lutton numberand the element of the list defines the effectiumber A zero ele-

ment disables a button, and elements are not restricted in value by the number of physical buttons.
However, no two dements can ha the same nonzero value, oBadValue error results. If any

of the buttons to be altered are logically in the down sk®etDeviceButtonMapping returns
MappingBusy, and the mapping is not changed.

XSetDeviceButtonMapping can generatBadDevice BadMatch, and BadValue errors.
To get the button mapping, usésetDeviceButtonMapping.

int XGetDeviceButtonMappingl{splay, device map_return nmap
Display *display;,
XDevice *device
unsigned chamap_returd];

int nmag
display Specifies the connection to the X server.
device Specifies the desired device.
map_return Specifies the mapping list.
nmap Specifies the number of items in the mapping list.

XGetDeviceButtonMapping returns the current mapping of the specified extensivicele Ele-
ments of the list are inded garting from one.XGetDeviceButtonMapping returns the number

of physical buttons actually on the point@he nominal mapping for the buttons is the identity
mapping: map[i]=i. The nmap argument specifies the length of the array where the button map-
ping is returned, and only the first nmap elements are returned in map_return.

XGetDeviceButtonMapping can generat®adDeviceand BadMatch errors.

2.1.12. Obtainingthe State of a Device

To dbtain information that describes the state of s kbuttons, and valuators of an extension
device, useXQueryDeviceState

29

XDeviceState * XQueryDeviceStatigplay, device
Display *display;
XDevice *device

display Specifies the connection to the X server.
device Specifies the desired device.

XQueryDeviceStatereturns a pointer to akDeviceStatestructure, which points to a list of
structures that describe the state of gskbuttons, and valuators on the device:

typedef struct {
XID device _id;
int num_classes;
XInputClass *data;
} X DeviceState;

The structures are of variable length, but the firsti@mbers are common to all and are as fol-
lows:

typedef struct {
unsigned char class;
unsigned char length;
} XInputClass;

The class member contains a class identifitais identifier can be compared with constants
defined in the file X11/extensions/XI.l+. Currentlydefined constants ar&eyClass, Button-
Class, and ValuatorClass.

The length member contains the length of the structure and can be used by clientsswttia
list.

The XValuatorState structure describes the current state of the valuators onvice.d@he
num_valuators member contains the number of valuators onvloe ddhemode member is a
mask whose bits report the data mode and other state information fovitee dehefollowing
bits are currently defined:

DeviceMode 1<<0 Relatve = Q Absolute = 1
ProximityState k<1 InProximity = 0, OutOfProximity = 1

The valuators member contains a pointer to an array of integers that describe the current value of
the aluators. Ifthe mode iRelative, these values are undefined.

30

typedef struct {
unsigned char class;
unsigned char length;
unsigned char num_valuators;
unsigned char mode;
int *valuators;

} X ValuatorState;

The XKeyState structure describes the current state of #ys kbn he deice. ByteN (from 0)
contains the bits fordy 8\ to 8N + 7 with the least significant bit in the byte representieg k
8N.

typedef struct {
unsigned char class;
unsigned char length;
short num_kys;
char leys[32];

} X KeyState;