/* $NetBSD: tulip.c,v 1.197.2.1 2020/01/31 11:17:32 martin Exp $ */ /*- * Copyright (c) 1998, 1999, 2000, 2002 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, * NASA Ames Research Center; and by Charles M. Hannum. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Device driver for the Digital Semiconductor ``Tulip'' (21x4x) * Ethernet controller family, and a variety of clone chips. */ #include __KERNEL_RCSID(0, "$NetBSD: tulip.c,v 1.197.2.1 2020/01/31 11:17:32 martin Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static const char * const tlp_chip_names[] = TULIP_CHIP_NAMES; static const struct tulip_txthresh_tab tlp_10_txthresh_tab[] = TLP_TXTHRESH_TAB_10; static const struct tulip_txthresh_tab tlp_10_100_txthresh_tab[] = TLP_TXTHRESH_TAB_10_100; static const struct tulip_txthresh_tab tlp_dm9102_txthresh_tab[] = TLP_TXTHRESH_TAB_DM9102; static void tlp_start(struct ifnet *); static void tlp_watchdog(struct ifnet *); static int tlp_ioctl(struct ifnet *, u_long, void *); static int tlp_init(struct ifnet *); static void tlp_stop(struct ifnet *, int); static int tlp_ifflags_cb(struct ethercom *); static void tlp_rxdrain(struct tulip_softc *); static int tlp_add_rxbuf(struct tulip_softc *, int); static void tlp_srom_idle(struct tulip_softc *); static int tlp_srom_size(struct tulip_softc *); static int tlp_enable(struct tulip_softc *); static void tlp_disable(struct tulip_softc *); static void tlp_filter_setup(struct tulip_softc *); static void tlp_winb_filter_setup(struct tulip_softc *); static void tlp_al981_filter_setup(struct tulip_softc *); static void tlp_asix_filter_setup(struct tulip_softc *); static void tlp_rxintr(struct tulip_softc *); static void tlp_txintr(struct tulip_softc *); static void tlp_mii_tick(void *); static void tlp_mii_statchg(struct ifnet *); static void tlp_winb_mii_statchg(struct ifnet *); static void tlp_dm9102_mii_statchg(struct ifnet *); static void tlp_mii_getmedia(struct tulip_softc *, struct ifmediareq *); static int tlp_mii_setmedia(struct tulip_softc *); static int tlp_bitbang_mii_readreg(device_t, int, int, uint16_t *); static int tlp_bitbang_mii_writereg(device_t, int, int, uint16_t); static int tlp_pnic_mii_readreg(device_t, int, int, uint16_t *); static int tlp_pnic_mii_writereg(device_t, int, int, uint16_t); static int tlp_al981_mii_readreg(device_t, int, int, uint16_t *); static int tlp_al981_mii_writereg(device_t, int, int, uint16_t); static void tlp_2114x_preinit(struct tulip_softc *); static void tlp_2114x_mii_preinit(struct tulip_softc *); static void tlp_pnic_preinit(struct tulip_softc *); static void tlp_dm9102_preinit(struct tulip_softc *); static void tlp_asix_preinit(struct tulip_softc *); static void tlp_21140_reset(struct tulip_softc *); static void tlp_21142_reset(struct tulip_softc *); static void tlp_pmac_reset(struct tulip_softc *); #if 0 static void tlp_dm9102_reset(struct tulip_softc *); #endif static void tlp_2114x_nway_tick(void *); #define tlp_mchash(addr, sz) \ (ether_crc32_le((addr), ETHER_ADDR_LEN) & ((sz) - 1)) /* * MII bit-bang glue. */ static uint32_t tlp_sio_mii_bitbang_read(device_t); static void tlp_sio_mii_bitbang_write(device_t, uint32_t); static const struct mii_bitbang_ops tlp_sio_mii_bitbang_ops = { tlp_sio_mii_bitbang_read, tlp_sio_mii_bitbang_write, { MIIROM_MDO, /* MII_BIT_MDO */ MIIROM_MDI, /* MII_BIT_MDI */ MIIROM_MDC, /* MII_BIT_MDC */ 0, /* MII_BIT_DIR_HOST_PHY */ MIIROM_MIIDIR, /* MII_BIT_DIR_PHY_HOST */ } }; #ifdef TLP_DEBUG #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \ printf x #else #define DPRINTF(sc, x) /* nothing */ #endif #ifdef TLP_STATS static void tlp_print_stats(struct tulip_softc *); #endif /* * Can be used to debug the SROM-related things, including contents. * Initialized so that it's patchable. */ int tlp_srom_debug = 0; /* * tlp_attach: * * Attach a Tulip interface to the system. */ int tlp_attach(struct tulip_softc *sc, const uint8_t *enaddr) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; device_t self = sc->sc_dev; int i, error; callout_init(&sc->sc_nway_callout, 0); callout_init(&sc->sc_tick_callout, 0); /* * NOTE: WE EXPECT THE FRONT-END TO INITIALIZE sc_regshift! */ /* * Setup the transmit threshold table. */ switch (sc->sc_chip) { case TULIP_CHIP_DE425: case TULIP_CHIP_21040: case TULIP_CHIP_21041: sc->sc_txth = tlp_10_txthresh_tab; break; case TULIP_CHIP_DM9102: case TULIP_CHIP_DM9102A: sc->sc_txth = tlp_dm9102_txthresh_tab; break; default: sc->sc_txth = tlp_10_100_txthresh_tab; break; } /* * Setup the filter setup function. */ switch (sc->sc_chip) { case TULIP_CHIP_WB89C840F: sc->sc_filter_setup = tlp_winb_filter_setup; break; case TULIP_CHIP_AL981: case TULIP_CHIP_AN983: case TULIP_CHIP_AN985: sc->sc_filter_setup = tlp_al981_filter_setup; break; case TULIP_CHIP_AX88140: case TULIP_CHIP_AX88141: sc->sc_filter_setup = tlp_asix_filter_setup; break; default: sc->sc_filter_setup = tlp_filter_setup; break; } /* * Set up the media status change function. */ switch (sc->sc_chip) { case TULIP_CHIP_WB89C840F: sc->sc_statchg = tlp_winb_mii_statchg; break; case TULIP_CHIP_DM9102: case TULIP_CHIP_DM9102A: sc->sc_statchg = tlp_dm9102_mii_statchg; break; default: /* * We may override this if we have special media * handling requirements (e.g. flipping GPIO pins). * * The pure-MII statchg function covers the basics. */ sc->sc_statchg = tlp_mii_statchg; break; } /* * Default to no FS|LS in setup packet descriptors. They're * supposed to be zero according to the 21040 and 21143 * manuals, and some chips fall over badly if they're * included. Yet, other chips seem to require them. Sigh. */ switch (sc->sc_chip) { case TULIP_CHIP_X3201_3: sc->sc_setup_fsls = TDCTL_Tx_FS | TDCTL_Tx_LS; break; default: sc->sc_setup_fsls = 0; } /* * Set up various chip-specific quirks. * * Note that wherever we can, we use the "ring" option for * transmit and receive descriptors. This is because some * clone chips apparently have problems when using chaining, * although some *only* support chaining. * * What we do is always program the "next" pointer, and then * conditionally set the TDCTL_CH and TDCTL_ER bits in the * appropriate places. */ switch (sc->sc_chip) { case TULIP_CHIP_21140: case TULIP_CHIP_21140A: case TULIP_CHIP_21142: case TULIP_CHIP_21143: case TULIP_CHIP_82C115: /* 21143-like */ case TULIP_CHIP_MX98713: /* 21140-like */ case TULIP_CHIP_MX98713A: /* 21143-like */ case TULIP_CHIP_MX98715: /* 21143-like */ case TULIP_CHIP_MX98715A: /* 21143-like */ case TULIP_CHIP_MX98715AEC_X: /* 21143-like */ case TULIP_CHIP_MX98725: /* 21143-like */ case TULIP_CHIP_RS7112: /* 21143-like */ /* * Run these chips in ring mode. */ sc->sc_tdctl_ch = 0; sc->sc_tdctl_er = TDCTL_ER; sc->sc_preinit = tlp_2114x_preinit; break; case TULIP_CHIP_82C168: case TULIP_CHIP_82C169: /* * Run these chips in ring mode. */ sc->sc_tdctl_ch = 0; sc->sc_tdctl_er = TDCTL_ER; sc->sc_preinit = tlp_pnic_preinit; /* * These chips seem to have busted DMA engines; just put them * in Store-and-Forward mode from the get-go. */ sc->sc_txthresh = TXTH_SF; break; case TULIP_CHIP_WB89C840F: /* * Run this chip in chained mode. */ sc->sc_tdctl_ch = TDCTL_CH; sc->sc_tdctl_er = 0; sc->sc_flags |= TULIPF_IC_FS; break; case TULIP_CHIP_DM9102: case TULIP_CHIP_DM9102A: /* * Run these chips in chained mode. */ sc->sc_tdctl_ch = TDCTL_CH; sc->sc_tdctl_er = 0; sc->sc_preinit = tlp_dm9102_preinit; /* * These chips have a broken bus interface, so we * can't use any optimized bus commands. For this * reason, we tend to underrun pretty quickly, so * just to Store-and-Forward mode from the get-go. */ sc->sc_txthresh = TXTH_DM9102_SF; break; case TULIP_CHIP_AX88140: case TULIP_CHIP_AX88141: /* * Run these chips in ring mode. */ sc->sc_tdctl_ch = 0; sc->sc_tdctl_er = TDCTL_ER; sc->sc_preinit = tlp_asix_preinit; break; default: /* * Default to running in ring mode. */ sc->sc_tdctl_ch = 0; sc->sc_tdctl_er = TDCTL_ER; } /* * Set up the MII bit-bang operations. */ switch (sc->sc_chip) { case TULIP_CHIP_WB89C840F: /* XXX direction bit different? */ sc->sc_bitbang_ops = &tlp_sio_mii_bitbang_ops; break; default: sc->sc_bitbang_ops = &tlp_sio_mii_bitbang_ops; } SIMPLEQ_INIT(&sc->sc_txfreeq); SIMPLEQ_INIT(&sc->sc_txdirtyq); /* * Allocate the control data structures, and create and load the * DMA map for it. */ if ((error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct tulip_control_data), PAGE_SIZE, 0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) { aprint_error_dev(self, "unable to allocate control data, error = %d\n", error); goto fail_0; } if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg, sizeof(struct tulip_control_data), (void **)&sc->sc_control_data, BUS_DMA_COHERENT)) != 0) { aprint_error_dev(self, "unable to map control data, error = %d\n", error); goto fail_1; } if ((error = bus_dmamap_create(sc->sc_dmat, sizeof(struct tulip_control_data), 1, sizeof(struct tulip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) { sc->sc_cddmamap = NULL; aprint_error_dev(self, "unable to create control data DMA map, error = %d\n", error); goto fail_2; } if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap, sc->sc_control_data, sizeof(struct tulip_control_data), NULL, 0)) != 0) { aprint_error_dev(self, "unable to load control data DMA map, error = %d\n", error); goto fail_3; } /* * Create the transmit buffer DMA maps. * * Note that on the Xircom clone, transmit buffers must be * 4-byte aligned. We're almost guaranteed to have to copy * the packet in that case, so we just limit ourselves to * one segment. * * On the DM9102, the transmit logic can only handle one * DMA segment. */ switch (sc->sc_chip) { case TULIP_CHIP_X3201_3: case TULIP_CHIP_DM9102: case TULIP_CHIP_DM9102A: case TULIP_CHIP_AX88140: case TULIP_CHIP_AX88141: sc->sc_ntxsegs = 1; break; default: sc->sc_ntxsegs = TULIP_NTXSEGS; } for (i = 0; i < TULIP_TXQUEUELEN; i++) { if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, sc->sc_ntxsegs, MCLBYTES, 0, 0, &sc->sc_txsoft[i].txs_dmamap)) != 0) { sc->sc_txsoft[i].txs_dmamap = NULL; aprint_error_dev(self, "unable to create tx DMA map %d, error = %d\n", i, error); goto fail_4; } } /* * Create the receive buffer DMA maps. */ for (i = 0; i < TULIP_NRXDESC; i++) { if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { sc->sc_rxsoft[i].rxs_dmamap = NULL; aprint_error_dev(self, "unable to create rx DMA map %d, error = %d\n", i, error); goto fail_5; } sc->sc_rxsoft[i].rxs_mbuf = NULL; } /* * From this point forward, the attachment cannot fail. A failure * before this point releases all resources that may have been * allocated. */ sc->sc_flags |= TULIPF_ATTACHED; /* * Reset the chip to a known state. */ tlp_reset(sc); /* Announce ourselves. */ aprint_normal_dev(self, "%s%sEthernet address %s\n", sc->sc_name[0] != '\0' ? sc->sc_name : "", sc->sc_name[0] != '\0' ? ", " : "", ether_sprintf(enaddr)); /* * Check to see if we're the simulated Ethernet on Connectix * Virtual PC. */ if (enaddr[0] == 0x00 && enaddr[1] == 0x03 && enaddr[2] == 0xff) sc->sc_flags |= TULIPF_VPC; /* * Initialize our media structures. This may probe the MII, if * present. */ (*sc->sc_mediasw->tmsw_init)(sc); strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; sc->sc_if_flags = ifp->if_flags; ifp->if_ioctl = tlp_ioctl; ifp->if_start = tlp_start; ifp->if_watchdog = tlp_watchdog; ifp->if_init = tlp_init; ifp->if_stop = tlp_stop; IFQ_SET_READY(&ifp->if_snd); /* * We can support 802.1Q VLAN-sized frames. */ sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; /* * Attach the interface. */ if_attach(ifp); if_deferred_start_init(ifp, NULL); ether_ifattach(ifp, enaddr); ether_set_ifflags_cb(&sc->sc_ethercom, tlp_ifflags_cb); rnd_attach_source(&sc->sc_rnd_source, device_xname(self), RND_TYPE_NET, RND_FLAG_DEFAULT); if (pmf_device_register(self, NULL, NULL)) pmf_class_network_register(self, ifp); else aprint_error_dev(self, "couldn't establish power handler\n"); return 0; /* * Free any resources we've allocated during the failed attach * attempt. Do this in reverse order and fall through. */ fail_5: for (i = 0; i < TULIP_NRXDESC; i++) { if (sc->sc_rxsoft[i].rxs_dmamap != NULL) bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap); } fail_4: for (i = 0; i < TULIP_TXQUEUELEN; i++) { if (sc->sc_txsoft[i].txs_dmamap != NULL) bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap); } bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); fail_3: bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); fail_2: bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data, sizeof(struct tulip_control_data)); fail_1: bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg); fail_0: return error; } /* * tlp_activate: * * Handle device activation/deactivation requests. */ int tlp_activate(device_t self, enum devact act) { struct tulip_softc *sc = device_private(self); switch (act) { case DVACT_DEACTIVATE: if_deactivate(&sc->sc_ethercom.ec_if); return 0; default: return EOPNOTSUPP; } } /* * tlp_detach: * * Detach a Tulip interface. */ int tlp_detach(struct tulip_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct tulip_rxsoft *rxs; struct tulip_txsoft *txs; device_t self = sc->sc_dev; int i, s; /* * Succeed now if there isn't any work to do. */ if ((sc->sc_flags & TULIPF_ATTACHED) == 0) return 0; s = splnet(); /* Stop the interface. Callouts are stopped in it. */ tlp_stop(ifp, 1); splx(s); /* Destroy our callouts. */ callout_destroy(&sc->sc_nway_callout); callout_destroy(&sc->sc_tick_callout); if (sc->sc_flags & TULIPF_HAS_MII) { /* Detach all PHYs */ mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY); } /* Delete all remaining media. */ ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY); rnd_detach_source(&sc->sc_rnd_source); ether_ifdetach(ifp); if_detach(ifp); for (i = 0; i < TULIP_NRXDESC; i++) { rxs = &sc->sc_rxsoft[i]; if (rxs->rxs_mbuf != NULL) { bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); m_freem(rxs->rxs_mbuf); rxs->rxs_mbuf = NULL; } bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap); } for (i = 0; i < TULIP_TXQUEUELEN; i++) { txs = &sc->sc_txsoft[i]; if (txs->txs_mbuf != NULL) { bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); m_freem(txs->txs_mbuf); txs->txs_mbuf = NULL; } bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap); } bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data, sizeof(struct tulip_control_data)); bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg); pmf_device_deregister(self); if (sc->sc_srom) free(sc->sc_srom, M_DEVBUF); return 0; } /* * tlp_start: [ifnet interface function] * * Start packet transmission on the interface. */ static void tlp_start(struct ifnet *ifp) { struct tulip_softc *sc = ifp->if_softc; struct mbuf *m0, *m; struct tulip_txsoft *txs, *last_txs = NULL; bus_dmamap_t dmamap; int error, firsttx, nexttx, lasttx = 1, ofree, seg; struct tulip_desc *txd; DPRINTF(sc, ("%s: tlp_start: sc_flags 0x%08x, if_flags 0x%08x\n", device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags)); /* * If we want a filter setup, it means no more descriptors were * available for the setup routine. Let it get a chance to wedge * itself into the ring. */ if (sc->sc_flags & TULIPF_WANT_SETUP) ifp->if_flags |= IFF_OACTIVE; if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; if (sc->sc_tick == tlp_2114x_nway_tick && (sc->sc_flags & TULIPF_LINK_UP) == 0 && ifp->if_snd.ifq_len < 10) return; /* * Remember the previous number of free descriptors and * the first descriptor we'll use. */ ofree = sc->sc_txfree; firsttx = sc->sc_txnext; DPRINTF(sc, ("%s: tlp_start: txfree %d, txnext %d\n", device_xname(sc->sc_dev), ofree, firsttx)); /* * Loop through the send queue, setting up transmit descriptors * until we drain the queue, or use up all available transmit * descriptors. */ while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL && sc->sc_txfree != 0) { /* * Grab a packet off the queue. */ IFQ_POLL(&ifp->if_snd, m0); if (m0 == NULL) break; m = NULL; dmamap = txs->txs_dmamap; /* * Load the DMA map. If this fails, the packet either * didn't fit in the alloted number of segments, or we were * short on resources. In this case, we'll copy and try * again. * * Note that if we're only allowed 1 Tx segment, we * have an alignment restriction. Do this test before * attempting to load the DMA map, because it's more * likely we'll trip the alignment test than the * more-than-one-segment test. */ if ((sc->sc_ntxsegs == 1 && (mtod(m0, uintptr_t) & 3) != 0) || bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) { MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { aprint_error_dev(sc->sc_dev, "unable to allocate Tx mbuf\n"); break; } MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner); if (m0->m_pkthdr.len > MHLEN) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { aprint_error_dev(sc->sc_dev, "unable to allocate Tx cluster\n"); m_freem(m); break; } } m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *)); m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len; error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m, BUS_DMA_WRITE | BUS_DMA_NOWAIT); if (error) { aprint_error_dev(sc->sc_dev, "unable to load Tx buffer, error = %d", error); break; } } /* * Ensure we have enough descriptors free to describe * the packet. */ if (dmamap->dm_nsegs > sc->sc_txfree) { /* * Not enough free descriptors to transmit this * packet. We haven't committed to anything yet, * so just unload the DMA map, put the packet * back on the queue, and punt. Notify the upper * layer that there are no more slots left. * * XXX We could allocate an mbuf and copy, but * XXX it is worth it? */ ifp->if_flags |= IFF_OACTIVE; bus_dmamap_unload(sc->sc_dmat, dmamap); if (m != NULL) m_freem(m); break; } IFQ_DEQUEUE(&ifp->if_snd, m0); if (m != NULL) { m_freem(m0); m0 = m; } /* * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. */ /* Sync the DMA map. */ bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); /* * Initialize the transmit descriptors. */ for (nexttx = sc->sc_txnext, seg = 0; seg < dmamap->dm_nsegs; seg++, nexttx = TULIP_NEXTTX(nexttx)) { /* * If this is the first descriptor we're * enqueueing, don't set the OWN bit just * yet. That could cause a race condition. * We'll do it below. */ txd = &sc->sc_txdescs[nexttx]; txd->td_status = (nexttx == firsttx) ? 0 : htole32(TDSTAT_OWN); txd->td_bufaddr1 = htole32(dmamap->dm_segs[seg].ds_addr); txd->td_ctl = htole32((dmamap->dm_segs[seg].ds_len << TDCTL_SIZE1_SHIFT) | sc->sc_tdctl_ch | (nexttx == (TULIP_NTXDESC - 1) ? sc->sc_tdctl_er : 0)); lasttx = nexttx; } KASSERT(lasttx != -1); /* Set `first segment' and `last segment' appropriately. */ sc->sc_txdescs[sc->sc_txnext].td_ctl |= htole32(TDCTL_Tx_FS); sc->sc_txdescs[lasttx].td_ctl |= htole32(TDCTL_Tx_LS); #ifdef TLP_DEBUG if (ifp->if_flags & IFF_DEBUG) { printf(" txsoft %p transmit chain:\n", txs); for (seg = sc->sc_txnext;; seg = TULIP_NEXTTX(seg)) { txd = &sc->sc_txdescs[seg]; printf(" descriptor %d:\n", seg); printf(" td_status: 0x%08x\n", le32toh(txd->td_status)); printf(" td_ctl: 0x%08x\n", le32toh(txd->td_ctl)); printf(" td_bufaddr1: 0x%08x\n", le32toh(txd->td_bufaddr1)); printf(" td_bufaddr2: 0x%08x\n", le32toh(txd->td_bufaddr2)); if (seg == lasttx) break; } } #endif /* Sync the descriptors we're using. */ TULIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* * Store a pointer to the packet so we can free it later, * and remember what txdirty will be once the packet is * done. */ txs->txs_mbuf = m0; txs->txs_firstdesc = sc->sc_txnext; txs->txs_lastdesc = lasttx; txs->txs_ndescs = dmamap->dm_nsegs; /* Advance the tx pointer. */ sc->sc_txfree -= dmamap->dm_nsegs; sc->sc_txnext = nexttx; SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q); SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q); last_txs = txs; /* * Pass the packet to any BPF listeners. */ bpf_mtap(ifp, m0, BPF_D_OUT); } if (txs == NULL || sc->sc_txfree == 0) { /* No more slots left; notify upper layer. */ ifp->if_flags |= IFF_OACTIVE; } if (sc->sc_txfree != ofree) { DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n", device_xname(sc->sc_dev), lasttx, firsttx)); /* * Cause a transmit interrupt to happen on the * last packet we enqueued. */ sc->sc_txdescs[lasttx].td_ctl |= htole32(TDCTL_Tx_IC); TULIP_CDTXSYNC(sc, lasttx, 1, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* * Some clone chips want IC on the *first* segment in * the packet. Appease them. */ KASSERT(last_txs != NULL); if ((sc->sc_flags & TULIPF_IC_FS) != 0 && last_txs->txs_firstdesc != lasttx) { sc->sc_txdescs[last_txs->txs_firstdesc].td_ctl |= htole32(TDCTL_Tx_IC); TULIP_CDTXSYNC(sc, last_txs->txs_firstdesc, 1, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } /* * The entire packet chain is set up. Give the * first descriptor to the chip now. */ sc->sc_txdescs[firsttx].td_status |= htole32(TDSTAT_OWN); TULIP_CDTXSYNC(sc, firsttx, 1, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* Wake up the transmitter. */ /* XXX USE AUTOPOLLING? */ TULIP_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD); /* Set a watchdog timer in case the chip flakes out. */ ifp->if_timer = 5; } } /* * tlp_watchdog: [ifnet interface function] * * Watchdog timer handler. */ static void tlp_watchdog(struct ifnet *ifp) { struct tulip_softc *sc = ifp->if_softc; int doing_setup, doing_transmit; doing_setup = (sc->sc_flags & TULIPF_DOING_SETUP); doing_transmit = (! SIMPLEQ_EMPTY(&sc->sc_txdirtyq)); if (doing_setup && doing_transmit) { printf("%s: filter setup and transmit timeout\n", device_xname(sc->sc_dev)); ifp->if_oerrors++; } else if (doing_transmit) { printf("%s: transmit timeout\n", device_xname(sc->sc_dev)); ifp->if_oerrors++; } else if (doing_setup) printf("%s: filter setup timeout\n", device_xname(sc->sc_dev)); else printf("%s: spurious watchdog timeout\n", device_xname(sc->sc_dev)); (void) tlp_init(ifp); /* Try to get more packets going. */ tlp_start(ifp); } /* If the interface is up and running, only modify the receive * filter when setting promiscuous or debug mode. Otherwise fall * through to ether_ioctl, which will reset the chip. */ static int tlp_ifflags_cb(struct ethercom *ec) { struct ifnet *ifp = &ec->ec_if; struct tulip_softc *sc = ifp->if_softc; int change = ifp->if_flags ^ sc->sc_if_flags; if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) return ENETRESET; if ((change & IFF_PROMISC) != 0) (*sc->sc_filter_setup)(sc); return 0; } /* * tlp_ioctl: [ifnet interface function] * * Handle control requests from the operator. */ static int tlp_ioctl(struct ifnet *ifp, u_long cmd, void *data) { struct tulip_softc *sc = ifp->if_softc; int s, error; s = splnet(); switch (cmd) { default: error = ether_ioctl(ifp, cmd, data); if (error == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) { /* * Multicast list has changed. Set the * hardware filter accordingly. */ (*sc->sc_filter_setup)(sc); } error = 0; } break; } /* Try to get more packets going. */ if (TULIP_IS_ENABLED(sc)) tlp_start(ifp); sc->sc_if_flags = ifp->if_flags; splx(s); return error; } /* * tlp_intr: * * Interrupt service routine. */ int tlp_intr(void *arg) { struct tulip_softc *sc = arg; struct ifnet *ifp = &sc->sc_ethercom.ec_if; uint32_t status, rxstatus, txstatus; int handled = 0, txthresh; DPRINTF(sc, ("%s: tlp_intr\n", device_xname(sc->sc_dev))); #ifdef DEBUG if (TULIP_IS_ENABLED(sc) == 0) panic("%s: tlp_intr: not enabled", device_xname(sc->sc_dev)); #endif /* * If the interface isn't running, the interrupt couldn't * possibly have come from us. */ if ((ifp->if_flags & IFF_RUNNING) == 0 || !device_is_active(sc->sc_dev)) return 0; /* Disable interrupts on the DM9102 (interrupt edge bug). */ switch (sc->sc_chip) { case TULIP_CHIP_DM9102: case TULIP_CHIP_DM9102A: TULIP_WRITE(sc, CSR_INTEN, 0); break; default: /* Nothing. */ break; } for (;;) { status = TULIP_READ(sc, CSR_STATUS); if (status) TULIP_WRITE(sc, CSR_STATUS, status); if ((status & sc->sc_inten) == 0) break; handled = 1; rxstatus = status & sc->sc_rxint_mask; txstatus = status & sc->sc_txint_mask; if (rxstatus) { /* Grab new any new packets. */ tlp_rxintr(sc); if (rxstatus & STATUS_RWT) printf("%s: receive watchdog timeout\n", device_xname(sc->sc_dev)); if (rxstatus & STATUS_RU) { printf("%s: receive ring overrun\n", device_xname(sc->sc_dev)); /* Get the receive process going again. */ if (sc->sc_tdctl_er != TDCTL_ER) { tlp_idle(sc, OPMODE_SR); TULIP_WRITE(sc, CSR_RXLIST, TULIP_CDRXADDR(sc, sc->sc_rxptr)); TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); } TULIP_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD); break; } } if (txstatus) { /* Sweep up transmit descriptors. */ tlp_txintr(sc); if (txstatus & STATUS_TJT) printf("%s: transmit jabber timeout\n", device_xname(sc->sc_dev)); if (txstatus & STATUS_UNF) { /* * Increase our transmit threshold if * another is available. */ txthresh = sc->sc_txthresh + 1; if (sc->sc_txth[txthresh].txth_name != NULL) { /* Idle the transmit process. */ tlp_idle(sc, OPMODE_ST); sc->sc_txthresh = txthresh; sc->sc_opmode &= ~(OPMODE_TR|OPMODE_SF); sc->sc_opmode |= sc->sc_txth[txthresh].txth_opmode; printf("%s: transmit underrun; new " "threshold: %s\n", device_xname(sc->sc_dev), sc->sc_txth[txthresh].txth_name); /* * Set the new threshold and restart * the transmit process. */ TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); } /* * XXX Log every Nth underrun from * XXX now on? */ } } if (status & (STATUS_TPS | STATUS_RPS)) { if (status & STATUS_TPS) printf("%s: transmit process stopped\n", device_xname(sc->sc_dev)); if (status & STATUS_RPS) printf("%s: receive process stopped\n", device_xname(sc->sc_dev)); (void) tlp_init(ifp); break; } if (status & STATUS_SE) { const char *str; switch (status & STATUS_EB) { case STATUS_EB_PARITY: str = "parity error"; break; case STATUS_EB_MABT: str = "master abort"; break; case STATUS_EB_TABT: str = "target abort"; break; default: str = "unknown error"; break; } aprint_error_dev(sc->sc_dev, "fatal system error: %s\n", str); (void) tlp_init(ifp); break; } /* * Not handled: * * Transmit buffer unavailable -- normal * condition, nothing to do, really. * * General purpose timer experied -- we don't * use the general purpose timer. * * Early receive interrupt -- not available on * all chips, we just use RI. We also only * use single-segment receive DMA, so this * is mostly useless. */ } /* Bring interrupts back up on the DM9102. */ switch (sc->sc_chip) { case TULIP_CHIP_DM9102: case TULIP_CHIP_DM9102A: TULIP_WRITE(sc, CSR_INTEN, sc->sc_inten); break; default: /* Nothing. */ break; } /* Try to get more packets going. */ if_schedule_deferred_start(ifp); if (handled) rnd_add_uint32(&sc->sc_rnd_source, status); return handled; } /* * tlp_rxintr: * * Helper; handle receive interrupts. */ static void tlp_rxintr(struct tulip_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct ether_header *eh; struct tulip_rxsoft *rxs; struct mbuf *m; uint32_t rxstat, errors; int i, len; for (i = sc->sc_rxptr;; i = TULIP_NEXTRX(i)) { rxs = &sc->sc_rxsoft[i]; TULIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); rxstat = le32toh(sc->sc_rxdescs[i].td_status); if (rxstat & TDSTAT_OWN) { /* * We have processed all of the receive buffers. */ break; } /* * Make sure the packet fit in one buffer. This should * always be the case. But the Lite-On PNIC, rev 33 * has an awful receive engine bug, which may require * a very icky work-around. */ if ((rxstat & (TDSTAT_Rx_FS | TDSTAT_Rx_LS)) != (TDSTAT_Rx_FS | TDSTAT_Rx_LS)) { printf("%s: incoming packet spilled, resetting\n", device_xname(sc->sc_dev)); (void) tlp_init(ifp); return; } /* * If any collisions were seen on the wire, count one. */ if (rxstat & TDSTAT_Rx_CS) ifp->if_collisions++; /* * If an error occurred, update stats, clear the status * word, and leave the packet buffer in place. It will * simply be reused the next time the ring comes around. */ errors = TDSTAT_Rx_DE | TDSTAT_Rx_RF | TDSTAT_Rx_TL | TDSTAT_Rx_CS | TDSTAT_Rx_RE | TDSTAT_Rx_DB | TDSTAT_Rx_CE; /* * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long * error. */ if ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) != 0) errors &= ~TDSTAT_Rx_TL; /* * If chip doesn't have MII, ignore the MII error bit. */ if ((sc->sc_flags & TULIPF_HAS_MII) == 0) errors &= ~TDSTAT_Rx_RE; if ((rxstat & TDSTAT_ES) != 0 && (rxstat & errors) != 0) { rxstat &= errors; #define PRINTERR(bit, str) \ if (rxstat & (bit)) \ aprint_error_dev(sc->sc_dev, \ "receive error: %s\n", str) ifp->if_ierrors++; PRINTERR(TDSTAT_Rx_DE, "descriptor error"); PRINTERR(TDSTAT_Rx_RF, "runt frame"); PRINTERR(TDSTAT_Rx_TL, "frame too long"); PRINTERR(TDSTAT_Rx_RE, "MII error"); PRINTERR(TDSTAT_Rx_DB, "dribbling bit"); PRINTERR(TDSTAT_Rx_CE, "CRC error"); #undef PRINTERR TULIP_INIT_RXDESC(sc, i); continue; } bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); /* * No errors; receive the packet. Note the Tulip * includes the CRC with every packet. */ len = TDSTAT_Rx_LENGTH(rxstat) - ETHER_CRC_LEN; #ifdef __NO_STRICT_ALIGNMENT /* * Allocate a new mbuf cluster. If that fails, we are * out of memory, and must drop the packet and recycle * the buffer that's already attached to this descriptor. */ m = rxs->rxs_mbuf; if (tlp_add_rxbuf(sc, i) != 0) { ifp->if_ierrors++; TULIP_INIT_RXDESC(sc, i); bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); continue; } #else /* * The Tulip's receive buffers must be 4-byte aligned. * But this means that the data after the Ethernet header * is misaligned. We must allocate a new buffer and * copy the data, shifted forward 2 bytes. */ MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { dropit: ifp->if_ierrors++; TULIP_INIT_RXDESC(sc, i); bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); continue; } MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner); if (len > (MHLEN - 2)) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); goto dropit; } } m->m_data += 2; /* * Note that we use clusters for incoming frames, so the * buffer is virtually contiguous. */ memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len); /* Allow the receive descriptor to continue using its mbuf. */ TULIP_INIT_RXDESC(sc, i); bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); #endif /* __NO_STRICT_ALIGNMENT */ eh = mtod(m, struct ether_header *); m_set_rcvif(m, ifp); m->m_pkthdr.len = m->m_len = len; /* * XXX Work-around for a weird problem with the emulated * 21041 on Connectix Virtual PC: * * When we receive a full-size TCP segment, we seem to get * a packet there the Rx status says 1522 bytes, yet we do * not get a frame-too-long error from the chip. The extra * bytes seem to always be zeros. Perhaps Virtual PC is * inserting 4 bytes of zeros after every packet. In any * case, let's try and detect this condition and truncate * the length so that it will pass up the stack. */ if (__predict_false((sc->sc_flags & TULIPF_VPC) != 0)) { uint16_t etype = ntohs(eh->ether_type); if (len > ETHER_MAX_FRAME(ifp, etype, 0)) m->m_pkthdr.len = m->m_len = len = ETHER_MAX_FRAME(ifp, etype, 0); } /* * We sometimes have to run the 21140 in Hash-Only * mode. If we're in that mode, and not in promiscuous * mode, and we have a unicast packet that isn't for * us, then drop it. */ if (sc->sc_filtmode == TDCTL_Tx_FT_HASHONLY && (ifp->if_flags & IFF_PROMISC) == 0 && ETHER_IS_MULTICAST(eh->ether_dhost) == 0 && memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost, ETHER_ADDR_LEN) != 0) { m_freem(m); continue; } /* Pass it on. */ if_percpuq_enqueue(ifp->if_percpuq, m); } /* Update the receive pointer. */ sc->sc_rxptr = i; } /* * tlp_txintr: * * Helper; handle transmit interrupts. */ static void tlp_txintr(struct tulip_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct tulip_txsoft *txs; uint32_t txstat; DPRINTF(sc, ("%s: tlp_txintr: sc_flags 0x%08x\n", device_xname(sc->sc_dev), sc->sc_flags)); ifp->if_flags &= ~IFF_OACTIVE; /* * Go through our Tx list and free mbufs for those * frames that have been transmitted. */ while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { TULIP_CDTXSYNC(sc, txs->txs_lastdesc, txs->txs_ndescs, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); #ifdef TLP_DEBUG if (ifp->if_flags & IFF_DEBUG) { int i; struct tulip_desc *txd; printf(" txsoft %p transmit chain:\n", txs); for (i = txs->txs_firstdesc;; i = TULIP_NEXTTX(i)) { txd = &sc->sc_txdescs[i]; printf(" descriptor %d:\n", i); printf(" td_status: 0x%08x\n", le32toh(txd->td_status)); printf(" td_ctl: 0x%08x\n", le32toh(txd->td_ctl)); printf(" td_bufaddr1: 0x%08x\n", le32toh(txd->td_bufaddr1)); printf(" td_bufaddr2: 0x%08x\n", le32toh(sc->sc_txdescs[i].td_bufaddr2)); if (i == txs->txs_lastdesc) break; } } #endif txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].td_status); if (txstat & TDSTAT_OWN) break; SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); sc->sc_txfree += txs->txs_ndescs; if (txs->txs_mbuf == NULL) { /* * If we didn't have an mbuf, it was the setup * packet. */ #ifdef DIAGNOSTIC if ((sc->sc_flags & TULIPF_DOING_SETUP) == 0) panic("tlp_txintr: null mbuf, not doing setup"); #endif TULIP_CDSPSYNC(sc, BUS_DMASYNC_POSTWRITE); sc->sc_flags &= ~TULIPF_DOING_SETUP; SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); continue; } bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); m_freem(txs->txs_mbuf); txs->txs_mbuf = NULL; SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); /* * Check for errors and collisions. */ #ifdef TLP_STATS if (txstat & TDSTAT_Tx_UF) sc->sc_stats.ts_tx_uf++; if (txstat & TDSTAT_Tx_TO) sc->sc_stats.ts_tx_to++; if (txstat & TDSTAT_Tx_EC) sc->sc_stats.ts_tx_ec++; if (txstat & TDSTAT_Tx_LC) sc->sc_stats.ts_tx_lc++; #endif if (txstat & (TDSTAT_Tx_UF | TDSTAT_Tx_TO)) ifp->if_oerrors++; if (txstat & TDSTAT_Tx_EC) ifp->if_collisions += 16; else ifp->if_collisions += TDSTAT_Tx_COLLISIONS(txstat); if (txstat & TDSTAT_Tx_LC) ifp->if_collisions++; ifp->if_opackets++; } /* * If there are no more pending transmissions, cancel the watchdog * timer. */ if (txs == NULL && (sc->sc_flags & TULIPF_DOING_SETUP) == 0) ifp->if_timer = 0; /* * If we have a receive filter setup pending, do it now. */ if (sc->sc_flags & TULIPF_WANT_SETUP) (*sc->sc_filter_setup)(sc); } #ifdef TLP_STATS void tlp_print_stats(struct tulip_softc *sc) { printf("%s: tx_uf %lu, tx_to %lu, tx_ec %lu, tx_lc %lu\n", device_xname(sc->sc_dev), sc->sc_stats.ts_tx_uf, sc->sc_stats.ts_tx_to, sc->sc_stats.ts_tx_ec, sc->sc_stats.ts_tx_lc); } #endif /* * tlp_reset: * * Perform a soft reset on the Tulip. */ void tlp_reset(struct tulip_softc *sc) { int i; TULIP_WRITE(sc, CSR_BUSMODE, BUSMODE_SWR); /* * Xircom, ASIX and Conexant clones don't bring themselves * out of reset automatically. * Instead, we have to wait at least 50 PCI cycles, and then * clear SWR. */ switch (sc->sc_chip) { case TULIP_CHIP_X3201_3: case TULIP_CHIP_AX88140: case TULIP_CHIP_AX88141: case TULIP_CHIP_RS7112: delay(10); TULIP_WRITE(sc, CSR_BUSMODE, 0); break; default: break; } for (i = 0; i < 1000; i++) { /* * Wait at least 50 PCI cycles for the reset to * complete before peeking at the Tulip again. * 10 uSec is a bit longer than 50 PCI cycles * (at 33MHz), but it doesn't hurt have the extra * wait. */ delay(10); if (TULIP_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR) == 0) break; } if (TULIP_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR)) aprint_error_dev(sc->sc_dev, "reset failed to complete\n"); delay(1000); /* * If the board has any GPIO reset sequences to issue, do them now. */ if (sc->sc_reset != NULL) (*sc->sc_reset)(sc); } /* * tlp_init: [ ifnet interface function ] * * Initialize the interface. Must be called at splnet(). */ static int tlp_init(struct ifnet *ifp) { struct tulip_softc *sc = ifp->if_softc; struct tulip_txsoft *txs; struct tulip_rxsoft *rxs; int i, error = 0; if ((error = tlp_enable(sc)) != 0) goto out; /* * Cancel any pending I/O. */ tlp_stop(ifp, 0); /* * Initialize `opmode' to 0, and call the pre-init routine, if * any. This is required because the 2114x and some of the * clones require that the media-related bits in `opmode' be * set before performing a soft-reset in order to get internal * chip pathways are correct. Yay! */ sc->sc_opmode = 0; if (sc->sc_preinit != NULL) (*sc->sc_preinit)(sc); /* * Reset the Tulip to a known state. */ tlp_reset(sc); /* * Initialize the BUSMODE register. */ sc->sc_busmode = BUSMODE_BAR; switch (sc->sc_chip) { case TULIP_CHIP_21140: case TULIP_CHIP_21140A: case TULIP_CHIP_21142: case TULIP_CHIP_21143: case TULIP_CHIP_82C115: case TULIP_CHIP_MX98725: /* * If we're allowed to do so, use Memory Read Line * and Memory Read Multiple. * * XXX Should we use Memory Write and Invalidate? */ if (sc->sc_flags & TULIPF_MRL) sc->sc_busmode |= BUSMODE_RLE; if (sc->sc_flags & TULIPF_MRM) sc->sc_busmode |= BUSMODE_RME; #if 0 if (sc->sc_flags & TULIPF_MWI) sc->sc_busmode |= BUSMODE_WLE; #endif break; case TULIP_CHIP_82C168: case TULIP_CHIP_82C169: sc->sc_busmode |= BUSMODE_PNIC_MBO; if (sc->sc_maxburst == 0) sc->sc_maxburst = 16; break; case TULIP_CHIP_AX88140: case TULIP_CHIP_AX88141: if (sc->sc_maxburst == 0) sc->sc_maxburst = 16; break; default: /* Nothing. */ break; } switch (sc->sc_cacheline) { default: /* * Note: We must *always* set these bits; a cache * alignment of 0 is RESERVED. */ case 8: sc->sc_busmode |= BUSMODE_CAL_8LW; break; case 16: sc->sc_busmode |= BUSMODE_CAL_16LW; break; case 32: sc->sc_busmode |= BUSMODE_CAL_32LW; break; } switch (sc->sc_maxburst) { case 1: sc->sc_busmode |= BUSMODE_PBL_1LW; break; case 2: sc->sc_busmode |= BUSMODE_PBL_2LW; break; case 4: sc->sc_busmode |= BUSMODE_PBL_4LW; break; case 8: sc->sc_busmode |= BUSMODE_PBL_8LW; break; case 16: sc->sc_busmode |= BUSMODE_PBL_16LW; break; case 32: sc->sc_busmode |= BUSMODE_PBL_32LW; break; default: sc->sc_busmode |= BUSMODE_PBL_DEFAULT; break; } #if BYTE_ORDER == BIG_ENDIAN /* * Can't use BUSMODE_BLE or BUSMODE_DBO; not all chips * support them, and even on ones that do, it doesn't * always work. So we always access descriptors with * little endian via htole32/le32toh. */ #endif /* * Big-endian bus requires BUSMODE_BLE anyway. * Also, BUSMODE_DBO is needed because we assume * descriptors are little endian. */ if (sc->sc_flags & TULIPF_BLE) sc->sc_busmode |= BUSMODE_BLE; if (sc->sc_flags & TULIPF_DBO) sc->sc_busmode |= BUSMODE_DBO; /* * Some chips have a broken bus interface. */ switch (sc->sc_chip) { case TULIP_CHIP_DM9102: case TULIP_CHIP_DM9102A: sc->sc_busmode = 0; break; default: /* Nothing. */ break; } TULIP_WRITE(sc, CSR_BUSMODE, sc->sc_busmode); /* * Initialize the OPMODE register. We don't write it until * we're ready to begin the transmit and receive processes. * * Media-related OPMODE bits are set in the media callbacks * for each specific chip/board. */ sc->sc_opmode |= OPMODE_SR | OPMODE_ST | sc->sc_txth[sc->sc_txthresh].txth_opmode; /* * Magical mystery initialization on the Macronix chips. * The MX98713 uses its own magic value, the rest share * a common one. */ switch (sc->sc_chip) { case TULIP_CHIP_MX98713: TULIP_WRITE(sc, CSR_PMAC_TOR, PMAC_TOR_98713); break; case TULIP_CHIP_MX98713A: case TULIP_CHIP_MX98715: case TULIP_CHIP_MX98715A: case TULIP_CHIP_MX98715AEC_X: case TULIP_CHIP_MX98725: TULIP_WRITE(sc, CSR_PMAC_TOR, PMAC_TOR_98715); break; default: /* Nothing. */ break; } /* * Initialize the transmit descriptor ring. */ memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs)); for (i = 0; i < TULIP_NTXDESC; i++) { struct tulip_desc *txd = &sc->sc_txdescs[i]; txd->td_ctl = htole32(sc->sc_tdctl_ch); txd->td_bufaddr2 = htole32(TULIP_CDTXADDR(sc, TULIP_NEXTTX(i))); } sc->sc_txdescs[TULIP_NTXDESC - 1].td_ctl |= htole32(sc->sc_tdctl_er); TULIP_CDTXSYNC(sc, 0, TULIP_NTXDESC, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); sc->sc_txfree = TULIP_NTXDESC; sc->sc_txnext = 0; /* * Initialize the transmit job descriptors. */ SIMPLEQ_INIT(&sc->sc_txfreeq); SIMPLEQ_INIT(&sc->sc_txdirtyq); for (i = 0; i < TULIP_TXQUEUELEN; i++) { txs = &sc->sc_txsoft[i]; txs->txs_mbuf = NULL; SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); } /* * Initialize the receive descriptor and receive job * descriptor rings. */ for (i = 0; i < TULIP_NRXDESC; i++) { rxs = &sc->sc_rxsoft[i]; if (rxs->rxs_mbuf == NULL) { if ((error = tlp_add_rxbuf(sc, i)) != 0) { aprint_error_dev(sc->sc_dev, "unable to allocate or map rx " "buffer %d, error = %d\n", i, error); /* * XXX Should attempt to run with fewer receive * XXX buffers instead of just failing. */ tlp_rxdrain(sc); goto out; } } else TULIP_INIT_RXDESC(sc, i); } sc->sc_rxptr = 0; /* * Initialize the interrupt mask and enable interrupts. */ /* normal interrupts */ sc->sc_inten = STATUS_TI | STATUS_TU | STATUS_RI | STATUS_NIS; /* abnormal interrupts */ sc->sc_inten |= STATUS_TPS | STATUS_TJT | STATUS_UNF | STATUS_RU | STATUS_RPS | STATUS_RWT | STATUS_SE | STATUS_AIS; sc->sc_rxint_mask = STATUS_RI | STATUS_RU | STATUS_RWT; sc->sc_txint_mask = STATUS_TI | STATUS_UNF | STATUS_TJT; switch (sc->sc_chip) { case TULIP_CHIP_WB89C840F: /* * Clear bits that we don't want that happen to * overlap or don't exist. */ sc->sc_inten &= ~(STATUS_WINB_REI | STATUS_RWT); break; default: /* Nothing. */ break; } sc->sc_rxint_mask &= sc->sc_inten; sc->sc_txint_mask &= sc->sc_inten; TULIP_WRITE(sc, CSR_INTEN, sc->sc_inten); TULIP_WRITE(sc, CSR_STATUS, 0xffffffff); /* * Give the transmit and receive rings to the Tulip. */ TULIP_WRITE(sc, CSR_TXLIST, TULIP_CDTXADDR(sc, sc->sc_txnext)); TULIP_WRITE(sc, CSR_RXLIST, TULIP_CDRXADDR(sc, sc->sc_rxptr)); /* * On chips that do this differently, set the station address. */ switch (sc->sc_chip) { case TULIP_CHIP_WB89C840F: { /* XXX Do this with stream writes? */ bus_addr_t cpa = TULIP_CSR_OFFSET(sc, CSR_WINB_CPA0); for (i = 0; i < ETHER_ADDR_LEN; i++) { bus_space_write_1(sc->sc_st, sc->sc_sh, cpa + i, CLLADDR(ifp->if_sadl)[i]); } break; } case TULIP_CHIP_AL981: case TULIP_CHIP_AN983: case TULIP_CHIP_AN985: { uint32_t reg; const uint8_t *enaddr = CLLADDR(ifp->if_sadl); reg = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) | (enaddr[3] << 24); bus_space_write_4(sc->sc_st, sc->sc_sh, CSR_ADM_PAR0, reg); reg = enaddr[4] | (enaddr[5] << 8); bus_space_write_4(sc->sc_st, sc->sc_sh, CSR_ADM_PAR1, reg); break; } case TULIP_CHIP_AX88140: case TULIP_CHIP_AX88141: { uint32_t reg; const uint8_t *enaddr = CLLADDR(ifp->if_sadl); reg = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) | (enaddr[3] << 24); TULIP_WRITE(sc, CSR_AX_FILTIDX, AX_FILTIDX_PAR0); TULIP_WRITE(sc, CSR_AX_FILTDATA, reg); reg = enaddr[4] | (enaddr[5] << 8); TULIP_WRITE(sc, CSR_AX_FILTIDX, AX_FILTIDX_PAR1); TULIP_WRITE(sc, CSR_AX_FILTDATA, reg); break; } default: /* Nothing. */ break; } /* * Set the receive filter. This will start the transmit and * receive processes. */ (*sc->sc_filter_setup)(sc); /* * Set the current media. */ (void)(*sc->sc_mediasw->tmsw_set)(sc); /* * Start the receive process. */ TULIP_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD); if (sc->sc_tick != NULL) { /* Start the one second clock. */ callout_reset(&sc->sc_tick_callout, hz >> 3, sc->sc_tick, sc); } /* * Note that the interface is now running. */ ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; sc->sc_if_flags = ifp->if_flags; out: if (error) { ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ifp->if_timer = 0; printf("%s: interface not running\n", device_xname(sc->sc_dev)); } return error; } /* * tlp_enable: * * Enable the Tulip chip. */ static int tlp_enable(struct tulip_softc *sc) { if (TULIP_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) { if ((*sc->sc_enable)(sc) != 0) { aprint_error_dev(sc->sc_dev, "device enable failed\n"); return EIO; } sc->sc_flags |= TULIPF_ENABLED; } return 0; } /* * tlp_disable: * * Disable the Tulip chip. */ static void tlp_disable(struct tulip_softc *sc) { if (TULIP_IS_ENABLED(sc) && sc->sc_disable != NULL) { (*sc->sc_disable)(sc); sc->sc_flags &= ~TULIPF_ENABLED; } } /* * tlp_rxdrain: * * Drain the receive queue. */ static void tlp_rxdrain(struct tulip_softc *sc) { struct tulip_rxsoft *rxs; int i; for (i = 0; i < TULIP_NRXDESC; i++) { rxs = &sc->sc_rxsoft[i]; if (rxs->rxs_mbuf != NULL) { bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); m_freem(rxs->rxs_mbuf); rxs->rxs_mbuf = NULL; } } } /* * tlp_stop: [ ifnet interface function ] * * Stop transmission on the interface. */ static void tlp_stop(struct ifnet *ifp, int disable) { struct tulip_softc *sc = ifp->if_softc; struct tulip_txsoft *txs; if (sc->sc_tick != NULL) { /* Stop the one second clock. */ callout_stop(&sc->sc_tick_callout); } if (sc->sc_flags & TULIPF_HAS_MII) { /* Down the MII. */ mii_down(&sc->sc_mii); } /* Disable interrupts. */ TULIP_WRITE(sc, CSR_INTEN, 0); /* Stop the transmit and receive processes. */ sc->sc_opmode = 0; TULIP_WRITE(sc, CSR_OPMODE, 0); TULIP_WRITE(sc, CSR_RXLIST, 0); TULIP_WRITE(sc, CSR_TXLIST, 0); /* * Release any queued transmit buffers. */ while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); if (txs->txs_mbuf != NULL) { bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); m_freem(txs->txs_mbuf); txs->txs_mbuf = NULL; } SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); } sc->sc_flags &= ~(TULIPF_WANT_SETUP | TULIPF_DOING_SETUP); /* * Mark the interface down and cancel the watchdog timer. */ ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); sc->sc_if_flags = ifp->if_flags; ifp->if_timer = 0; /* * Reset the chip (needed on some flavors to actually disable it). */ tlp_reset(sc); if (disable) { tlp_rxdrain(sc); tlp_disable(sc); } } #define SROM_EMIT(sc, x) \ do { \ TULIP_WRITE((sc), CSR_MIIROM, (x)); \ delay(2); \ } while (0) /* * tlp_srom_idle: * * Put the SROM in idle state. */ static void tlp_srom_idle(struct tulip_softc *sc) { uint32_t miirom; int i; miirom = MIIROM_SR; SROM_EMIT(sc, miirom); miirom |= MIIROM_RD; SROM_EMIT(sc, miirom); miirom |= MIIROM_SROMCS; SROM_EMIT(sc, miirom); SROM_EMIT(sc, miirom | MIIROM_SROMSK); /* Strobe the clock 32 times. */ for (i = 0; i < 32; i++) { SROM_EMIT(sc, miirom); SROM_EMIT(sc, miirom | MIIROM_SROMSK); } SROM_EMIT(sc, miirom); miirom &= ~MIIROM_SROMCS; SROM_EMIT(sc, miirom); SROM_EMIT(sc, 0); } /* * tlp_srom_size: * * Determine the number of address bits in the SROM. */ static int tlp_srom_size(struct tulip_softc *sc) { uint32_t miirom; int x; /* Select the SROM. */ miirom = MIIROM_SR; SROM_EMIT(sc, miirom); miirom |= MIIROM_RD; SROM_EMIT(sc, miirom); /* Send CHIP SELECT for one clock tick. */ miirom |= MIIROM_SROMCS; SROM_EMIT(sc, miirom); /* Shift in the READ opcode. */ for (x = 3; x > 0; x--) { if (TULIP_SROM_OPC_READ & (1 << (x - 1))) miirom |= MIIROM_SROMDI; else miirom &= ~MIIROM_SROMDI; SROM_EMIT(sc, miirom); SROM_EMIT(sc, miirom | MIIROM_SROMSK); SROM_EMIT(sc, miirom); } /* Shift in address and look for dummy 0 bit. */ for (x = 1; x <= 12; x++) { miirom &= ~MIIROM_SROMDI; SROM_EMIT(sc, miirom); SROM_EMIT(sc, miirom | MIIROM_SROMSK); if (!TULIP_ISSET(sc, CSR_MIIROM, MIIROM_SROMDO)) break; SROM_EMIT(sc, miirom); } /* Clear CHIP SELECT. */ miirom &= ~MIIROM_SROMCS; SROM_EMIT(sc, miirom); /* Deselect the SROM. */ SROM_EMIT(sc, 0); if (x < 4 || x > 12) { aprint_debug_dev(sc->sc_dev, "broken MicroWire interface " "detected; setting SROM size to 1Kb\n"); return 6; } else { if (tlp_srom_debug) printf("%s: SROM size is 2^%d*16 bits (%d bytes)\n", device_xname(sc->sc_dev), x, (1 << (x + 4)) >> 3); return x; } } /* * tlp_read_srom: * * Read the Tulip SROM. */ int tlp_read_srom(struct tulip_softc *sc) { int size; uint32_t miirom; uint16_t datain; int i, x; tlp_srom_idle(sc); sc->sc_srom_addrbits = tlp_srom_size(sc); if (sc->sc_srom_addrbits == 0) return 0; size = TULIP_ROM_SIZE(sc->sc_srom_addrbits); sc->sc_srom = malloc(size, M_DEVBUF, M_NOWAIT); /* Select the SROM. */ miirom = MIIROM_SR; SROM_EMIT(sc, miirom); miirom |= MIIROM_RD; SROM_EMIT(sc, miirom); for (i = 0; i < size; i += 2) { /* Send CHIP SELECT for one clock tick. */ miirom |= MIIROM_SROMCS; SROM_EMIT(sc, miirom); /* Shift in the READ opcode. */ for (x = 3; x > 0; x--) { if (TULIP_SROM_OPC_READ & (1 << (x - 1))) miirom |= MIIROM_SROMDI; else miirom &= ~MIIROM_SROMDI; SROM_EMIT(sc, miirom); SROM_EMIT(sc, miirom | MIIROM_SROMSK); SROM_EMIT(sc, miirom); } /* Shift in address. */ for (x = sc->sc_srom_addrbits; x > 0; x--) { if (i & (1 << x)) miirom |= MIIROM_SROMDI; else miirom &= ~MIIROM_SROMDI; SROM_EMIT(sc, miirom); SROM_EMIT(sc, miirom | MIIROM_SROMSK); SROM_EMIT(sc, miirom); } /* Shift out data. */ miirom &= ~MIIROM_SROMDI; datain = 0; for (x = 16; x > 0; x--) { SROM_EMIT(sc, miirom | MIIROM_SROMSK); if (TULIP_ISSET(sc, CSR_MIIROM, MIIROM_SROMDO)) datain |= (1 << (x - 1)); SROM_EMIT(sc, miirom); } sc->sc_srom[i] = datain & 0xff; sc->sc_srom[i + 1] = datain >> 8; /* Clear CHIP SELECT. */ miirom &= ~MIIROM_SROMCS; SROM_EMIT(sc, miirom); } /* Deselect the SROM. */ SROM_EMIT(sc, 0); /* ...and idle it. */ tlp_srom_idle(sc); if (tlp_srom_debug) { printf("SROM CONTENTS:"); for (i = 0; i < size; i++) { if ((i % 8) == 0) printf("\n\t"); printf("0x%02x ", sc->sc_srom[i]); } printf("\n"); } return 1; } #undef SROM_EMIT /* * tlp_add_rxbuf: * * Add a receive buffer to the indicated descriptor. */ static int tlp_add_rxbuf(struct tulip_softc *sc, int idx) { struct tulip_rxsoft *rxs = &sc->sc_rxsoft[idx]; struct mbuf *m; int error; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) return ENOBUFS; MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner); MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); return ENOBUFS; } if (rxs->rxs_mbuf != NULL) bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); rxs->rxs_mbuf = m; error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT); if (error) { aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, error = %d\n", idx, error); panic("tlp_add_rxbuf"); /* XXX */ } bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); TULIP_INIT_RXDESC(sc, idx); return 0; } /* * tlp_srom_crcok: * * Check the CRC of the Tulip SROM. */ int tlp_srom_crcok(const uint8_t *romdata) { uint32_t crc; crc = ether_crc32_le(romdata, TULIP_ROM_CRC32_CHECKSUM); crc = (crc & 0xffff) ^ 0xffff; if (crc == TULIP_ROM_GETW(romdata, TULIP_ROM_CRC32_CHECKSUM)) return 1; /* * Try an alternate checksum. */ crc = ether_crc32_le(romdata, TULIP_ROM_CRC32_CHECKSUM1); crc = (crc & 0xffff) ^ 0xffff; if (crc == TULIP_ROM_GETW(romdata, TULIP_ROM_CRC32_CHECKSUM1)) return 1; return 0; } /* * tlp_isv_srom: * * Check to see if the SROM is in the new standardized format. */ int tlp_isv_srom(const uint8_t *romdata) { int i; uint16_t cksum; if (tlp_srom_crcok(romdata)) { /* * SROM CRC checks out; must be in the new format. */ return 1; } cksum = TULIP_ROM_GETW(romdata, TULIP_ROM_CRC32_CHECKSUM); if (cksum == 0xffff || cksum == 0) { /* * No checksum present. Check the SROM ID; 18 bytes of 0 * followed by 1 (version) followed by the number of * adapters which use this SROM (should be non-zero). */ for (i = 0; i < TULIP_ROM_SROM_FORMAT_VERION; i++) { if (romdata[i] != 0) return 0; } if (romdata[TULIP_ROM_SROM_FORMAT_VERION] != 1) return 0; if (romdata[TULIP_ROM_CHIP_COUNT] == 0) return 0; return 1; } return 0; } /* * tlp_isv_srom_enaddr: * * Get the Ethernet address from an ISV SROM. */ int tlp_isv_srom_enaddr(struct tulip_softc *sc, uint8_t *enaddr) { int i, devcnt; if (tlp_isv_srom(sc->sc_srom) == 0) return 0; devcnt = sc->sc_srom[TULIP_ROM_CHIP_COUNT]; for (i = 0; i < devcnt; i++) { if (sc->sc_srom[TULIP_ROM_CHIP_COUNT] == 1) break; if (sc->sc_srom[TULIP_ROM_CHIPn_DEVICE_NUMBER(i)] == sc->sc_devno) break; } if (i == devcnt) return 0; memcpy(enaddr, &sc->sc_srom[TULIP_ROM_IEEE_NETWORK_ADDRESS], ETHER_ADDR_LEN); enaddr[5] += i; return 1; } /* * tlp_parse_old_srom: * * Parse old-format SROMs. * * This routine is largely lifted from Matt Thomas's `de' driver. */ int tlp_parse_old_srom(struct tulip_softc *sc, uint8_t *enaddr) { static const uint8_t testpat[] = { 0xff, 0, 0x55, 0xaa, 0xff, 0, 0x55, 0xaa }; int i; uint32_t cksum; if (memcmp(&sc->sc_srom[0], &sc->sc_srom[16], 8) != 0) { /* * Phobos G100 interfaces have the address at * offsets 0 and 20, but each pair of bytes is * swapped. */ if (sc->sc_srom_addrbits == 6 && sc->sc_srom[1] == 0x00 && sc->sc_srom[0] == 0x60 && sc->sc_srom[3] == 0xf5 && memcmp(&sc->sc_srom[0], &sc->sc_srom[20], 6) == 0) { for (i = 0; i < 6; i += 2) { enaddr[i] = sc->sc_srom[i + 1]; enaddr[i + 1] = sc->sc_srom[i]; } return 1; } /* * Phobos G130/G160 interfaces have the address at * offsets 20 and 84, but each pair of bytes is * swapped. */ if (sc->sc_srom_addrbits == 6 && sc->sc_srom[21] == 0x00 && sc->sc_srom[20] == 0x60 && sc->sc_srom[23] == 0xf5 && memcmp(&sc->sc_srom[20], &sc->sc_srom[84], 6) == 0) { for (i = 0; i < 6; i += 2) { enaddr[i] = sc->sc_srom[20 + i + 1]; enaddr[i + 1] = sc->sc_srom[20 + i]; } return 1; } /* * Cobalt Networks interfaces simply have the address * in the first six bytes. The rest is zeroed out * on some models, but others contain unknown data. */ if (sc->sc_srom[0] == 0x00 && sc->sc_srom[1] == 0x10 && sc->sc_srom[2] == 0xe0) { memcpy(enaddr, sc->sc_srom, ETHER_ADDR_LEN); return 1; } /* * Some vendors (e.g. ZNYX) don't use the standard * DEC Address ROM format, but rather just have an * Ethernet address in the first 6 bytes, maybe a * 2 byte checksum, and then all 0xff's. */ for (i = 8; i < 32; i++) { if (sc->sc_srom[i] != 0xff && sc->sc_srom[i] != 0) return 0; } /* * Sanity check the Ethernet address: * * - Make sure it's not multicast or locally * assigned * - Make sure it has a non-0 OUI */ if (sc->sc_srom[0] & 3) return 0; if (sc->sc_srom[0] == 0 && sc->sc_srom[1] == 0 && sc->sc_srom[2] == 0) return 0; memcpy(enaddr, sc->sc_srom, ETHER_ADDR_LEN); return 1; } /* * Standard DEC Address ROM test. */ if (memcmp(&sc->sc_srom[24], testpat, 8) != 0) return 0; for (i = 0; i < 8; i++) { if (sc->sc_srom[i] != sc->sc_srom[15 - i]) return 0; } memcpy(enaddr, sc->sc_srom, ETHER_ADDR_LEN); cksum = *(uint16_t *) &enaddr[0]; cksum <<= 1; if (cksum > 0xffff) cksum -= 0xffff; cksum += *(uint16_t *) &enaddr[2]; if (cksum > 0xffff) cksum -= 0xffff; cksum <<= 1; if (cksum > 0xffff) cksum -= 0xffff; cksum += *(uint16_t *) &enaddr[4]; if (cksum >= 0xffff) cksum -= 0xffff; if (cksum != *(uint16_t *) &sc->sc_srom[6]) return 0; return 1; } /* * tlp_filter_setup: * * Set the Tulip's receive filter. */ static void tlp_filter_setup(struct tulip_softc *sc) { struct ethercom *ec = &sc->sc_ethercom; struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct ether_multi *enm; struct ether_multistep step; volatile uint32_t *sp; struct tulip_txsoft *txs; struct tulip_desc *txd; uint8_t enaddr[ETHER_ADDR_LEN]; uint32_t hash, hashsize; int cnt, nexttx; DPRINTF(sc, ("%s: tlp_filter_setup: sc_flags 0x%08x\n", device_xname(sc->sc_dev), sc->sc_flags)); memcpy(enaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN); /* * If there are transmissions pending, wait until they have * completed. */ if (! SIMPLEQ_EMPTY(&sc->sc_txdirtyq) || (sc->sc_flags & TULIPF_DOING_SETUP) != 0) { sc->sc_flags |= TULIPF_WANT_SETUP; DPRINTF(sc, ("%s: tlp_filter_setup: deferring\n", device_xname(sc->sc_dev))); return; } sc->sc_flags &= ~TULIPF_WANT_SETUP; switch (sc->sc_chip) { case TULIP_CHIP_82C115: hashsize = TULIP_PNICII_HASHSIZE; break; default: hashsize = TULIP_MCHASHSIZE; } /* * If we're running, idle the transmit and receive engines. If * we're NOT running, we're being called from tlp_init(), and our * writing OPMODE will start the transmit and receive processes * in motion. */ if (ifp->if_flags & IFF_RUNNING) tlp_idle(sc, OPMODE_ST | OPMODE_SR); sc->sc_opmode &= ~(OPMODE_PR | OPMODE_PM); if (ifp->if_flags & IFF_PROMISC) { sc->sc_opmode |= OPMODE_PR; goto allmulti; } /* * Try Perfect filtering first. */ sc->sc_filtmode = TDCTL_Tx_FT_PERFECT; sp = TULIP_CDSP(sc); memset(TULIP_CDSP(sc), 0, TULIP_SETUP_PACKET_LEN); cnt = 0; ETHER_LOCK(ec); ETHER_FIRST_MULTI(step, ec, enm); while (enm != NULL) { if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { /* * We must listen to a range of multicast addresses. * For now, just accept all multicasts, rather than * trying to set only those filter bits needed to match * the range. (At this time, the only use of address * ranges is for IP multicast routing, for which the * range is big enough to require all bits set.) */ ETHER_UNLOCK(ec); goto allmulti; } if (cnt == (TULIP_MAXADDRS - 2)) { /* * We already have our multicast limit (still need * our station address and broadcast). Go to * Hash-Perfect mode. */ ETHER_UNLOCK(ec); goto hashperfect; } cnt++; *sp++ = htole32(TULIP_SP_FIELD(enm->enm_addrlo, 0)); *sp++ = htole32(TULIP_SP_FIELD(enm->enm_addrlo, 1)); *sp++ = htole32(TULIP_SP_FIELD(enm->enm_addrlo, 2)); ETHER_NEXT_MULTI(step, enm); } ETHER_UNLOCK(ec); if (ifp->if_flags & IFF_BROADCAST) { /* ...and the broadcast address. */ cnt++; *sp++ = htole32(TULIP_SP_FIELD_C(0xff, 0xff)); *sp++ = htole32(TULIP_SP_FIELD_C(0xff, 0xff)); *sp++ = htole32(TULIP_SP_FIELD_C(0xff, 0xff)); } /* Pad the rest with our station address. */ for (; cnt < TULIP_MAXADDRS; cnt++) { *sp++ = htole32(TULIP_SP_FIELD(enaddr, 0)); *sp++ = htole32(TULIP_SP_FIELD(enaddr, 1)); *sp++ = htole32(TULIP_SP_FIELD(enaddr, 2)); } ifp->if_flags &= ~IFF_ALLMULTI; goto setit; hashperfect: /* * Try Hash-Perfect mode. */ /* * Some 21140 chips have broken Hash-Perfect modes. On these * chips, we simply use Hash-Only mode, and put our station * address into the filter. */ if (sc->sc_chip == TULIP_CHIP_21140) sc->sc_filtmode = TDCTL_Tx_FT_HASHONLY; else sc->sc_filtmode = TDCTL_Tx_FT_HASH; sp = TULIP_CDSP(sc); memset(TULIP_CDSP(sc), 0, TULIP_SETUP_PACKET_LEN); ETHER_LOCK(ec); ETHER_FIRST_MULTI(step, ec, enm); while (enm != NULL) { if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { /* * We must listen to a range of multicast addresses. * For now, just accept all multicasts, rather than * trying to set only those filter bits needed to match * the range. (At this time, the only use of address * ranges is for IP multicast routing, for which the * range is big enough to require all bits set.) */ ETHER_UNLOCK(ec); goto allmulti; } hash = tlp_mchash(enm->enm_addrlo, hashsize); sp[hash >> 4] |= htole32(1 << (hash & 0xf)); ETHER_NEXT_MULTI(step, enm); } ETHER_UNLOCK(ec); if (ifp->if_flags & IFF_BROADCAST) { /* ...and the broadcast address. */ hash = tlp_mchash(etherbroadcastaddr, hashsize); sp[hash >> 4] |= htole32(1 << (hash & 0xf)); } if (sc->sc_filtmode == TDCTL_Tx_FT_HASHONLY) { /* ...and our station address. */ hash = tlp_mchash(enaddr, hashsize); sp[hash >> 4] |= htole32(1 << (hash & 0xf)); } else { /* * Hash-Perfect mode; put our station address after * the hash table. */ sp[39] = htole32(TULIP_SP_FIELD(enaddr, 0)); sp[40] = htole32(TULIP_SP_FIELD(enaddr, 1)); sp[41] = htole32(TULIP_SP_FIELD(enaddr, 2)); } ifp->if_flags &= ~IFF_ALLMULTI; goto setit; allmulti: /* * Use Perfect filter mode. First address is the broadcast address, * and pad the rest with our station address. We'll set Pass-all- * multicast in OPMODE below. */ sc->sc_filtmode = TDCTL_Tx_FT_PERFECT; sp = TULIP_CDSP(sc); memset(TULIP_CDSP(sc), 0, TULIP_SETUP_PACKET_LEN); cnt = 0; if (ifp->if_flags & IFF_BROADCAST) { cnt++; *sp++ = htole32(TULIP_SP_FIELD_C(0xff, 0xff)); *sp++ = htole32(TULIP_SP_FIELD_C(0xff, 0xff)); *sp++ = htole32(TULIP_SP_FIELD_C(0xff, 0xff)); } for (; cnt < TULIP_MAXADDRS; cnt++) { *sp++ = htole32(TULIP_SP_FIELD(enaddr, 0)); *sp++ = htole32(TULIP_SP_FIELD(enaddr, 1)); *sp++ = htole32(TULIP_SP_FIELD(enaddr, 2)); } ifp->if_flags |= IFF_ALLMULTI; setit: if (ifp->if_flags & IFF_ALLMULTI) sc->sc_opmode |= OPMODE_PM; /* Sync the setup packet buffer. */ TULIP_CDSPSYNC(sc, BUS_DMASYNC_PREWRITE); /* * Fill in the setup packet descriptor. */ txs = SIMPLEQ_FIRST(&sc->sc_txfreeq); txs->txs_firstdesc = sc->sc_txnext; txs->txs_lastdesc = sc->sc_txnext; txs->txs_ndescs = 1; txs->txs_mbuf = NULL; nexttx = sc->sc_txnext; txd = &sc->sc_txdescs[nexttx]; txd->td_status = 0; txd->td_bufaddr1 = htole32(TULIP_CDSPADDR(sc)); txd->td_ctl = htole32((TULIP_SETUP_PACKET_LEN << TDCTL_SIZE1_SHIFT) | sc->sc_filtmode | TDCTL_Tx_SET | sc->sc_setup_fsls | TDCTL_Tx_IC | sc->sc_tdctl_ch | (nexttx == (TULIP_NTXDESC - 1) ? sc->sc_tdctl_er : 0)); TULIP_CDTXSYNC(sc, nexttx, 1, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); #ifdef TLP_DEBUG if (ifp->if_flags & IFF_DEBUG) { printf(" filter_setup %p transmit chain:\n", txs); printf(" descriptor %d:\n", nexttx); printf(" td_status: 0x%08x\n", le32toh(txd->td_status)); printf(" td_ctl: 0x%08x\n", le32toh(txd->td_ctl)); printf(" td_bufaddr1: 0x%08x\n", le32toh(txd->td_bufaddr1)); printf(" td_bufaddr2: 0x%08x\n", le32toh(txd->td_bufaddr2)); } #endif txd->td_status = htole32(TDSTAT_OWN); TULIP_CDTXSYNC(sc, nexttx, 1, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* Advance the tx pointer. */ sc->sc_txfree -= 1; sc->sc_txnext = TULIP_NEXTTX(nexttx); SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q); SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q); /* * Set the OPMODE register. This will also resume the * transmit process we idled above. */ TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); sc->sc_flags |= TULIPF_DOING_SETUP; /* * Kick the transmitter; this will cause the Tulip to * read the setup descriptor. */ /* XXX USE AUTOPOLLING? */ TULIP_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD); /* Set up a watchdog timer in case the chip flakes out. */ ifp->if_timer = 5; DPRINTF(sc, ("%s: tlp_filter_setup: returning\n", device_xname(sc->sc_dev))); } /* * tlp_winb_filter_setup: * * Set the Winbond 89C840F's receive filter. */ static void tlp_winb_filter_setup(struct tulip_softc *sc) { struct ethercom *ec = &sc->sc_ethercom; struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct ether_multi *enm; struct ether_multistep step; uint32_t hash, mchash[2]; DPRINTF(sc, ("%s: tlp_winb_filter_setup: sc_flags 0x%08x\n", device_xname(sc->sc_dev), sc->sc_flags)); sc->sc_opmode &= ~(OPMODE_WINB_APP | OPMODE_WINB_AMP |OPMODE_WINB_ABP); if (ifp->if_flags & IFF_MULTICAST) sc->sc_opmode |= OPMODE_WINB_AMP; if (ifp->if_flags & IFF_BROADCAST) sc->sc_opmode |= OPMODE_WINB_ABP; if (ifp->if_flags & IFF_PROMISC) { sc->sc_opmode |= OPMODE_WINB_APP; goto allmulti; } mchash[0] = mchash[1] = 0; ETHER_FIRST_MULTI(step, ec, enm); while (enm != NULL) { if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { /* * We must listen to a range of multicast addresses. * For now, just accept all multicasts, rather than * trying to set only those filter bits needed to match * the range. (At this time, the only use of address * ranges is for IP multicast routing, for which the * range is big enough to require all bits set.) */ goto allmulti; } /* * According to the FreeBSD `wb' driver, yes, you * really do invert the hash. */ hash = (~(ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26)) & 0x3f; mchash[hash >> 5] |= 1 << (hash & 0x1f); ETHER_NEXT_MULTI(step, enm); } ifp->if_flags &= ~IFF_ALLMULTI; goto setit; allmulti: ifp->if_flags |= IFF_ALLMULTI; mchash[0] = mchash[1] = 0xffffffff; setit: TULIP_WRITE(sc, CSR_WINB_CMA0, mchash[0]); TULIP_WRITE(sc, CSR_WINB_CMA1, mchash[1]); TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); DPRINTF(sc, ("%s: tlp_winb_filter_setup: returning\n", device_xname(sc->sc_dev))); } /* * tlp_al981_filter_setup: * * Set the ADMtek AL981's receive filter. */ static void tlp_al981_filter_setup(struct tulip_softc *sc) { struct ethercom *ec = &sc->sc_ethercom; struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct ether_multi *enm; struct ether_multistep step; uint32_t hash, mchash[2]; /* * If the chip is running, we need to reset the interface, * and will revisit here (with IFF_RUNNING) clear. The * chip seems to really not like to have its multicast * filter programmed without a reset. */ if (ifp->if_flags & IFF_RUNNING) { (void) tlp_init(ifp); return; } DPRINTF(sc, ("%s: tlp_al981_filter_setup: sc_flags 0x%08x\n", device_xname(sc->sc_dev), sc->sc_flags)); sc->sc_opmode &= ~(OPMODE_PR | OPMODE_PM); if (ifp->if_flags & IFF_PROMISC) { sc->sc_opmode |= OPMODE_PR; goto allmulti; } mchash[0] = mchash[1] = 0; ETHER_LOCK(ec); ETHER_FIRST_MULTI(step, ec, enm); while (enm != NULL) { if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { /* * We must listen to a range of multicast addresses. * For now, just accept all multicasts, rather than * trying to set only those filter bits needed to match * the range. (At this time, the only use of address * ranges is for IP multicast routing, for which the * range is big enough to require all bits set.) */ ETHER_UNLOCK(ec); goto allmulti; } hash = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f; mchash[hash >> 5] |= __BIT(hash & 0x1f); ETHER_NEXT_MULTI(step, enm); } ETHER_UNLOCK(ec); ifp->if_flags &= ~IFF_ALLMULTI; goto setit; allmulti: ifp->if_flags |= IFF_ALLMULTI; mchash[0] = mchash[1] = 0xffffffff; setit: bus_space_write_4(sc->sc_st, sc->sc_sh, CSR_ADM_MAR0, mchash[0]); bus_space_write_4(sc->sc_st, sc->sc_sh, CSR_ADM_MAR1, mchash[1]); TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); DPRINTF(sc, ("%s: tlp_al981_filter_setup: returning\n", device_xname(sc->sc_dev))); } /* * tlp_asix_filter_setup: * * Set the ASIX AX8814x receive filter. */ static void tlp_asix_filter_setup(struct tulip_softc *sc) { struct ethercom *ec = &sc->sc_ethercom; struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct ether_multi *enm; struct ether_multistep step; uint32_t hash, mchash[2]; DPRINTF(sc, ("%s: tlp_asix_filter_setup: sc_flags 0x%08x\n", device_xname(sc->sc_dev), sc->sc_flags)); sc->sc_opmode &= ~(OPMODE_PM | OPMODE_AX_RB | OPMODE_PR); if (ifp->if_flags & IFF_MULTICAST) sc->sc_opmode |= OPMODE_PM; if (ifp->if_flags & IFF_BROADCAST) sc->sc_opmode |= OPMODE_AX_RB; if (ifp->if_flags & IFF_PROMISC) { sc->sc_opmode |= OPMODE_PR; goto allmulti; } mchash[0] = mchash[1] = 0; ETHER_LOCK(ec); ETHER_FIRST_MULTI(step, ec, enm); while (enm != NULL) { if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { /* * We must listen to a range of multicast addresses. * For now, just accept all multicasts, rather than * trying to set only those filter bits needed to match * the range. (At this time, the only use of address * ranges is for IP multicast routing, for which the * range is big enough to require all bits set.) */ ETHER_UNLOCK(ec); goto allmulti; } hash = (ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26) & 0x3f; if (hash < 32) mchash[0] |= (1 << hash); else mchash[1] |= (1 << (hash - 32)); ETHER_NEXT_MULTI(step, enm); } ETHER_UNLOCK(ec); ifp->if_flags &= ~IFF_ALLMULTI; goto setit; allmulti: ifp->if_flags |= IFF_ALLMULTI; mchash[0] = mchash[1] = 0xffffffff; setit: TULIP_WRITE(sc, CSR_AX_FILTIDX, AX_FILTIDX_MAR0); TULIP_WRITE(sc, CSR_AX_FILTDATA, mchash[0]); TULIP_WRITE(sc, CSR_AX_FILTIDX, AX_FILTIDX_MAR1); TULIP_WRITE(sc, CSR_AX_FILTDATA, mchash[1]); TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); DPRINTF(sc, ("%s: tlp_asix_filter_setup: returning\n", device_xname(sc->sc_dev))); } /* * tlp_idle: * * Cause the transmit and/or receive processes to go idle. */ void tlp_idle(struct tulip_softc *sc, uint32_t bits) { static const char * const tlp_tx_state_names[] = { "STOPPED", "RUNNING - FETCH", "RUNNING - WAIT", "RUNNING - READING", "-- RESERVED --", "RUNNING - SETUP", "SUSPENDED", "RUNNING - CLOSE", }; static const char * const tlp_rx_state_names[] = { "STOPPED", "RUNNING - FETCH", "RUNNING - CHECK", "RUNNING - WAIT", "SUSPENDED", "RUNNING - CLOSE", "RUNNING - FLUSH", "RUNNING - QUEUE", }; static const char * const dm9102_tx_state_names[] = { "STOPPED", "RUNNING - FETCH", "RUNNING - SETUP", "RUNNING - READING", "RUNNING - CLOSE - CLEAR OWNER", "RUNNING - WAIT", "RUNNING - CLOSE - WRITE STATUS", "SUSPENDED", }; static const char * const dm9102_rx_state_names[] = { "STOPPED", "RUNNING - FETCH", "RUNNING - WAIT", "RUNNING - QUEUE", "RUNNING - CLOSE - CLEAR OWNER", "RUNNING - CLOSE - WRITE STATUS", "SUSPENDED", "RUNNING - FLUSH", }; const char * const *tx_state_names, * const *rx_state_names; uint32_t csr, ackmask = 0; int i; switch (sc->sc_chip) { case TULIP_CHIP_DM9102: case TULIP_CHIP_DM9102A: tx_state_names = dm9102_tx_state_names; rx_state_names = dm9102_rx_state_names; break; default: tx_state_names = tlp_tx_state_names; rx_state_names = tlp_rx_state_names; break; } if (bits & OPMODE_ST) ackmask |= STATUS_TPS; if (bits & OPMODE_SR) ackmask |= STATUS_RPS; TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode & ~bits); for (i = 0; i < 1000; i++) { if (TULIP_ISSET(sc, CSR_STATUS, ackmask) == ackmask) break; delay(10); } csr = TULIP_READ(sc, CSR_STATUS); if ((csr & ackmask) != ackmask) { if ((bits & OPMODE_ST) != 0 && (csr & STATUS_TPS) == 0 && (csr & STATUS_TS) != STATUS_TS_STOPPED) { switch (sc->sc_chip) { case TULIP_CHIP_AX88140: case TULIP_CHIP_AX88141: /* * Filter the message out on noisy chips. */ break; default: printf("%s: transmit process failed to idle: " "state %s\n", device_xname(sc->sc_dev), tx_state_names[(csr & STATUS_TS) >> 20]); } } if ((bits & OPMODE_SR) != 0 && (csr & STATUS_RPS) == 0 && (csr & STATUS_RS) != STATUS_RS_STOPPED) { switch (sc->sc_chip) { case TULIP_CHIP_AN983: case TULIP_CHIP_AN985: case TULIP_CHIP_DM9102A: case TULIP_CHIP_RS7112: /* * Filter the message out on noisy chips. */ break; default: printf("%s: receive process failed to idle: " "state %s\n", device_xname(sc->sc_dev), rx_state_names[(csr & STATUS_RS) >> 17]); } } } TULIP_WRITE(sc, CSR_STATUS, ackmask); } /***************************************************************************** * Generic media support functions. *****************************************************************************/ /* * tlp_mediastatus: [ifmedia interface function] * * Query the current media. */ void tlp_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) { struct tulip_softc *sc = ifp->if_softc; if (TULIP_IS_ENABLED(sc) == 0) { ifmr->ifm_active = IFM_ETHER | IFM_NONE; ifmr->ifm_status = 0; return; } (*sc->sc_mediasw->tmsw_get)(sc, ifmr); } /* * tlp_mediachange: [ifmedia interface function] * * Update the current media. */ int tlp_mediachange(struct ifnet *ifp) { struct tulip_softc *sc = ifp->if_softc; if ((ifp->if_flags & IFF_UP) == 0) return 0; return (*sc->sc_mediasw->tmsw_set)(sc); } /***************************************************************************** * Support functions for MII-attached media. *****************************************************************************/ /* * tlp_mii_tick: * * One second timer, used to tick the MII. */ static void tlp_mii_tick(void *arg) { struct tulip_softc *sc = arg; int s; if (!device_is_active(sc->sc_dev)) return; s = splnet(); mii_tick(&sc->sc_mii); splx(s); callout_reset(&sc->sc_tick_callout, hz, sc->sc_tick, sc); } /* * tlp_mii_statchg: [mii interface function] * * Callback from PHY when media changes. */ static void tlp_mii_statchg(struct ifnet *ifp) { struct tulip_softc *sc = ifp->if_softc; /* Idle the transmit and receive processes. */ tlp_idle(sc, OPMODE_ST | OPMODE_SR); sc->sc_opmode &= ~(OPMODE_TTM | OPMODE_FD | OPMODE_HBD); if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_10_T) sc->sc_opmode |= OPMODE_TTM; else sc->sc_opmode |= OPMODE_HBD; if (sc->sc_mii.mii_media_active & IFM_FDX) sc->sc_opmode |= OPMODE_FD | OPMODE_HBD; /* * Write new OPMODE bits. This also restarts the transmit * and receive processes. */ TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); } /* * tlp_winb_mii_statchg: [mii interface function] * * Callback from PHY when media changes. This version is * for the Winbond 89C840F, which has different OPMODE bits. */ static void tlp_winb_mii_statchg(struct ifnet *ifp) { struct tulip_softc *sc = ifp->if_softc; /* Idle the transmit and receive processes. */ tlp_idle(sc, OPMODE_ST | OPMODE_SR); sc->sc_opmode &= ~(OPMODE_WINB_FES | OPMODE_FD); if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) sc->sc_opmode |= OPMODE_WINB_FES; if (sc->sc_mii.mii_media_active & IFM_FDX) sc->sc_opmode |= OPMODE_FD; /* * Write new OPMODE bits. This also restarts the transmit * and receive processes. */ TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); } /* * tlp_dm9102_mii_statchg: [mii interface function] * * Callback from PHY when media changes. This version is * for the DM9102. */ static void tlp_dm9102_mii_statchg(struct ifnet *ifp) { struct tulip_softc *sc = ifp->if_softc; /* * Don't idle the transmit and receive processes, here. It * seems to fail, and just causes excess noise. */ sc->sc_opmode &= ~(OPMODE_TTM | OPMODE_FD); if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_100_TX) sc->sc_opmode |= OPMODE_TTM; if (sc->sc_mii.mii_media_active & IFM_FDX) sc->sc_opmode |= OPMODE_FD; /* * Write new OPMODE bits. */ TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); } /* * tlp_mii_getmedia: * * Callback from ifmedia to request current media status. */ static void tlp_mii_getmedia(struct tulip_softc *sc, struct ifmediareq *ifmr) { struct mii_data * const mii = &sc->sc_mii; mii_pollstat(mii); ifmr->ifm_status = mii->mii_media_status; ifmr->ifm_active = mii->mii_media_active; } /* * tlp_mii_setmedia: * * Callback from ifmedia to request new media setting. */ static int tlp_mii_setmedia(struct tulip_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; int rc; if ((ifp->if_flags & IFF_UP) == 0) return 0; switch (sc->sc_chip) { case TULIP_CHIP_21142: case TULIP_CHIP_21143: /* Disable the internal Nway engine. */ TULIP_WRITE(sc, CSR_SIATXRX, 0); break; default: /* Nothing. */ break; } if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO) return 0; return rc; } /* * tlp_bitbang_mii_readreg: * * Read a PHY register via bit-bang'ing the MII. */ static int tlp_bitbang_mii_readreg(device_t self, int phy, int reg, uint16_t *val) { struct tulip_softc *sc = device_private(self); return mii_bitbang_readreg(self, sc->sc_bitbang_ops, phy, reg, val); } /* * tlp_bitbang_mii_writereg: * * Write a PHY register via bit-bang'ing the MII. */ static int tlp_bitbang_mii_writereg(device_t self, int phy, int reg, uint16_t val) { struct tulip_softc *sc = device_private(self); return mii_bitbang_writereg(self, sc->sc_bitbang_ops, phy, reg, val); } /* * tlp_sio_mii_bitbang_read: * * Read the MII serial port for the MII bit-bang module. */ static uint32_t tlp_sio_mii_bitbang_read(device_t self) { struct tulip_softc *sc = device_private(self); return TULIP_READ(sc, CSR_MIIROM); } /* * tlp_sio_mii_bitbang_write: * * Write the MII serial port for the MII bit-bang module. */ static void tlp_sio_mii_bitbang_write(device_t self, uint32_t val) { struct tulip_softc *sc = device_private(self); TULIP_WRITE(sc, CSR_MIIROM, val); } /* * tlp_pnic_mii_readreg: * * Read a PHY register on the Lite-On PNIC. */ static int tlp_pnic_mii_readreg(device_t self, int phy, int reg, uint16_t *val) { struct tulip_softc *sc = device_private(self); uint32_t data; int i; TULIP_WRITE(sc, CSR_PNIC_MII, PNIC_MII_MBO | PNIC_MII_RESERVED | PNIC_MII_READ | (phy << PNIC_MII_PHYSHIFT) | (reg << PNIC_MII_REGSHIFT)); for (i = 0; i < 1000; i++) { delay(10); data = TULIP_READ(sc, CSR_PNIC_MII); if ((data & PNIC_MII_BUSY) == 0) { if ((data & PNIC_MII_DATA) == PNIC_MII_DATA) return -1; else { *val = data & PNIC_MII_DATA; return 0; } } } printf("%s: MII read timed out\n", device_xname(sc->sc_dev)); return ETIMEDOUT; } /* * tlp_pnic_mii_writereg: * * Write a PHY register on the Lite-On PNIC. */ static int tlp_pnic_mii_writereg(device_t self, int phy, int reg, uint16_t val) { struct tulip_softc *sc = device_private(self); int i; TULIP_WRITE(sc, CSR_PNIC_MII, PNIC_MII_MBO | PNIC_MII_RESERVED | PNIC_MII_WRITE | (phy << PNIC_MII_PHYSHIFT) | (reg << PNIC_MII_REGSHIFT) | val); for (i = 0; i < 1000; i++) { delay(10); if (TULIP_ISSET(sc, CSR_PNIC_MII, PNIC_MII_BUSY) == 0) return 0; } printf("%s: MII write timed out\n", device_xname(sc->sc_dev)); return ETIMEDOUT; } static const bus_addr_t tlp_al981_phy_regmap[] = { CSR_ADM_BMCR, CSR_ADM_BMSR, CSR_ADM_PHYIDR1, CSR_ADM_PHYIDR2, CSR_ADM_ANAR, CSR_ADM_ANLPAR, CSR_ADM_ANER, CSR_ADM_XMC, CSR_ADM_XCIIS, CSR_ADM_XIE, CSR_ADM_100CTR, }; static const int tlp_al981_phy_regmap_size = sizeof(tlp_al981_phy_regmap) / sizeof(tlp_al981_phy_regmap[0]); /* * tlp_al981_mii_readreg: * * Read a PHY register on the ADMtek AL981. */ static int tlp_al981_mii_readreg(device_t self, int phy, int reg, uint16_t *val) { struct tulip_softc *sc = device_private(self); /* AL981 only has an internal PHY. */ if (phy != 0) return -1; if (reg >= tlp_al981_phy_regmap_size) return -1; *val = bus_space_read_4(sc->sc_st, sc->sc_sh, tlp_al981_phy_regmap[reg]) & 0xffff; return 0; } /* * tlp_al981_mii_writereg: * * Write a PHY register on the ADMtek AL981. */ static int tlp_al981_mii_writereg(device_t self, int phy, int reg, uint16_t val) { struct tulip_softc *sc = device_private(self); /* AL981 only has an internal PHY. */ if (phy != 0) return -1; if (reg >= tlp_al981_phy_regmap_size) return -1; bus_space_write_4(sc->sc_st, sc->sc_sh, tlp_al981_phy_regmap[reg], val); return 0; } /***************************************************************************** * Chip-specific pre-init and reset functions. *****************************************************************************/ /* * tlp_2114x_preinit: * * Pre-init function shared by DECchip 21140, 21140A, 21142, and 21143. */ static void tlp_2114x_preinit(struct tulip_softc *sc) { struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur; struct tulip_21x4x_media *tm = ife->ifm_aux; /* * Whether or not we're in MII or SIA/SYM mode, the media info * contains the appropriate OPMODE bits. * * Also, we always set the Must-Be-One bit. */ sc->sc_opmode |= OPMODE_MBO | tm->tm_opmode; TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); } /* * tlp_2114x_mii_preinit: * * Pre-init function shared by DECchip 21140, 21140A, 21142, and 21143. * This version is used by boards which only have MII and don't have * an ISV SROM. */ static void tlp_2114x_mii_preinit(struct tulip_softc *sc) { /* * Always set the Must-Be-One bit, and Port Select (to select MII). * We'll never be called during a media change. */ sc->sc_opmode |= OPMODE_MBO | OPMODE_PS; TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); } /* * tlp_pnic_preinit: * * Pre-init function for the Lite-On 82c168 and 82c169. */ static void tlp_pnic_preinit(struct tulip_softc *sc) { if (sc->sc_flags & TULIPF_HAS_MII) { /* * MII case: just set the port-select bit; we will never * be called during a media change. */ sc->sc_opmode |= OPMODE_PS; } else { /* * ENDEC/PCS/Nway mode; enable the Tx backoff counter. */ sc->sc_opmode |= OPMODE_PNIC_TBEN; } } /* * tlp_asix_preinit: * * Pre-init function for the ASIX chipsets. */ static void tlp_asix_preinit(struct tulip_softc *sc) { switch (sc->sc_chip) { case TULIP_CHIP_AX88140: case TULIP_CHIP_AX88141: /* XXX Handle PHY. */ sc->sc_opmode |= OPMODE_HBD | OPMODE_PS; break; default: /* Nothing */ break; } TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); } /* * tlp_dm9102_preinit: * * Pre-init function for the Davicom DM9102. */ static void tlp_dm9102_preinit(struct tulip_softc *sc) { switch (sc->sc_chip) { case TULIP_CHIP_DM9102: sc->sc_opmode |= OPMODE_MBO | OPMODE_HBD | OPMODE_PS; break; case TULIP_CHIP_DM9102A: /* * XXX Figure out how to actually deal with the HomePNA * XXX portion of the DM9102A. */ sc->sc_opmode |= OPMODE_MBO | OPMODE_HBD; break; default: /* Nothing. */ break; } TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); } /* * tlp_21140_reset: * * Issue a reset sequence on the 21140 via the GPIO facility. */ static void tlp_21140_reset(struct tulip_softc *sc) { struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur; struct tulip_21x4x_media *tm = ife->ifm_aux; int i; /* First, set the direction on the GPIO pins. */ TULIP_WRITE(sc, CSR_GPP, GPP_GPC | sc->sc_gp_dir); /* Now, issue the reset sequence. */ for (i = 0; i < tm->tm_reset_length; i++) { delay(10); TULIP_WRITE(sc, CSR_GPP, sc->sc_srom[tm->tm_reset_offset + i]); } /* Now, issue the selection sequence. */ for (i = 0; i < tm->tm_gp_length; i++) { delay(10); TULIP_WRITE(sc, CSR_GPP, sc->sc_srom[tm->tm_gp_offset + i]); } /* If there were no sequences, just lower the pins. */ if (tm->tm_reset_length == 0 && tm->tm_gp_length == 0) { delay(10); TULIP_WRITE(sc, CSR_GPP, 0); } } /* * tlp_21142_reset: * * Issue a reset sequence on the 21142 via the GPIO facility. */ static void tlp_21142_reset(struct tulip_softc *sc) { struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur; struct tulip_21x4x_media *tm = ife->ifm_aux; const uint8_t *cp; int i; cp = &sc->sc_srom[tm->tm_reset_offset]; for (i = 0; i < tm->tm_reset_length; i++, cp += 2) { delay(10); TULIP_WRITE(sc, CSR_SIAGEN, TULIP_ROM_GETW(cp, 0) << 16); } cp = &sc->sc_srom[tm->tm_gp_offset]; for (i = 0; i < tm->tm_gp_length; i++, cp += 2) { delay(10); TULIP_WRITE(sc, CSR_SIAGEN, TULIP_ROM_GETW(cp, 0) << 16); } /* If there were no sequences, just lower the pins. */ if (tm->tm_reset_length == 0 && tm->tm_gp_length == 0) { delay(10); TULIP_WRITE(sc, CSR_SIAGEN, 0); } } /* * tlp_pmac_reset: * * Reset routine for Macronix chips. */ static void tlp_pmac_reset(struct tulip_softc *sc) { switch (sc->sc_chip) { case TULIP_CHIP_82C115: case TULIP_CHIP_MX98715: case TULIP_CHIP_MX98715A: case TULIP_CHIP_MX98725: /* * Set the LED operating mode. This information is located * in the EEPROM at byte offset 0x77, per the MX98715A and * MX98725 application notes. */ TULIP_WRITE(sc, CSR_MIIROM, sc->sc_srom[0x77] << 24); break; case TULIP_CHIP_MX98715AEC_X: /* * Set the LED operating mode. This information is located * in the EEPROM at byte offset 0x76, per the MX98715AEC * application note. */ TULIP_WRITE(sc, CSR_MIIROM, ((0xf & sc->sc_srom[0x76]) << 28) | ((0xf0 & sc->sc_srom[0x76]) << 20)); break; default: /* Nothing. */ break; } } #if 0 /* * tlp_dm9102_reset: * * Reset routine for the Davicom DM9102. */ static void tlp_dm9102_reset(struct tulip_softc *sc) { TULIP_WRITE(sc, CSR_DM_PHYSTAT, DM_PHYSTAT_GEPC | DM_PHYSTAT_GPED); delay(100); TULIP_WRITE(sc, CSR_DM_PHYSTAT, 0); } #endif /***************************************************************************** * Chip/board-specific media switches. The ones here are ones that * are potentially common to multiple front-ends. *****************************************************************************/ /* * This table is a common place for all sorts of media information, * keyed off of the SROM media code for that media. * * Note that we explicitly configure the 21142/21143 to always advertise * NWay capabilities when using the UTP port. * XXX Actually, we don't yet. */ static const struct tulip_srom_to_ifmedia tulip_srom_to_ifmedia_table[] = { { TULIP_ROM_MB_MEDIA_TP, IFM_10_T, 0, "10baseT", OPMODE_TTM, BMSR_10THDX, { SIACONN_21040_10BASET, SIATXRX_21040_10BASET, SIAGEN_21040_10BASET }, { SIACONN_21041_10BASET, SIATXRX_21041_10BASET, SIAGEN_21041_10BASET }, { SIACONN_21142_10BASET, SIATXRX_21142_10BASET, SIAGEN_21142_10BASET } }, { TULIP_ROM_MB_MEDIA_BNC, IFM_10_2, 0, "10base2", 0, 0, { 0, 0, 0 }, { SIACONN_21041_BNC, SIATXRX_21041_BNC, SIAGEN_21041_BNC }, { SIACONN_21142_BNC, SIATXRX_21142_BNC, SIAGEN_21142_BNC } }, { TULIP_ROM_MB_MEDIA_AUI, IFM_10_5, 0, "10base5", 0, 0, { SIACONN_21040_AUI, SIATXRX_21040_AUI, SIAGEN_21040_AUI }, { SIACONN_21041_AUI, SIATXRX_21041_AUI, SIAGEN_21041_AUI }, { SIACONN_21142_AUI, SIATXRX_21142_AUI, SIAGEN_21142_AUI } }, { TULIP_ROM_MB_MEDIA_100TX, IFM_100_TX, 0, "100baseTX", OPMODE_PS | OPMODE_PCS | OPMODE_SCR | OPMODE_HBD, BMSR_100TXHDX, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, SIAGEN_ABM } }, { TULIP_ROM_MB_MEDIA_TP_FDX, IFM_10_T, IFM_FDX, "10baseT-FDX", OPMODE_TTM | OPMODE_FD | OPMODE_HBD, BMSR_10TFDX, { SIACONN_21040_10BASET_FDX, SIATXRX_21040_10BASET_FDX, SIAGEN_21040_10BASET_FDX }, { SIACONN_21041_10BASET_FDX, SIATXRX_21041_10BASET_FDX, SIAGEN_21041_10BASET_FDX }, { SIACONN_21142_10BASET_FDX, SIATXRX_21142_10BASET_FDX, SIAGEN_21142_10BASET_FDX } }, { TULIP_ROM_MB_MEDIA_100TX_FDX, IFM_100_TX, IFM_FDX, "100baseTX-FDX", OPMODE_PS | OPMODE_PCS | OPMODE_SCR | OPMODE_FD | OPMODE_HBD, BMSR_100TXFDX, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, SIAGEN_ABM } }, { TULIP_ROM_MB_MEDIA_100T4, IFM_100_T4, 0, "100baseT4", OPMODE_PS | OPMODE_PCS | OPMODE_SCR | OPMODE_HBD, BMSR_100T4, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, SIAGEN_ABM } }, { TULIP_ROM_MB_MEDIA_100FX, IFM_100_FX, 0, "100baseFX", OPMODE_PS | OPMODE_PCS | OPMODE_HBD, 0, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, SIAGEN_ABM } }, { TULIP_ROM_MB_MEDIA_100FX_FDX, IFM_100_FX, IFM_FDX, "100baseFX-FDX", OPMODE_PS | OPMODE_PCS | OPMODE_FD | OPMODE_HBD, 0, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, SIAGEN_ABM } }, { 0, 0, 0, NULL, 0, 0, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 } }, }; static const struct tulip_srom_to_ifmedia *tlp_srom_to_ifmedia(uint8_t); static void tlp_srom_media_info(struct tulip_softc *, const struct tulip_srom_to_ifmedia *, struct tulip_21x4x_media *); static void tlp_add_srom_media(struct tulip_softc *, int, void (*)(struct tulip_softc *, struct ifmediareq *), int (*)(struct tulip_softc *), const uint8_t *, int); static void tlp_print_media(struct tulip_softc *); static void tlp_nway_activate(struct tulip_softc *, int); static void tlp_get_minst(struct tulip_softc *); static const struct tulip_srom_to_ifmedia * tlp_srom_to_ifmedia(uint8_t sm) { const struct tulip_srom_to_ifmedia *tsti; for (tsti = tulip_srom_to_ifmedia_table; tsti->tsti_name != NULL; tsti++) { if (tsti->tsti_srom == sm) return tsti; } return NULL; } static void tlp_srom_media_info(struct tulip_softc *sc, const struct tulip_srom_to_ifmedia *tsti, struct tulip_21x4x_media *tm) { tm->tm_name = tsti->tsti_name; tm->tm_opmode = tsti->tsti_opmode; sc->sc_sia_cap |= tsti->tsti_sia_cap; switch (sc->sc_chip) { case TULIP_CHIP_DE425: case TULIP_CHIP_21040: tm->tm_sia = tsti->tsti_21040; /* struct assignment */ break; case TULIP_CHIP_21041: tm->tm_sia = tsti->tsti_21041; /* struct assignment */ break; case TULIP_CHIP_21142: case TULIP_CHIP_21143: case TULIP_CHIP_82C115: case TULIP_CHIP_MX98715: case TULIP_CHIP_MX98715A: case TULIP_CHIP_MX98715AEC_X: case TULIP_CHIP_MX98725: tm->tm_sia = tsti->tsti_21142; /* struct assignment */ break; default: /* Nothing. */ break; } } static void tlp_add_srom_media(struct tulip_softc *sc, int type, void (*get)(struct tulip_softc *, struct ifmediareq *), int (*set)(struct tulip_softc *), const uint8_t *list, int cnt) { struct tulip_21x4x_media *tm; const struct tulip_srom_to_ifmedia *tsti; int i; for (i = 0; i < cnt; i++) { tsti = tlp_srom_to_ifmedia(list[i]); tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK | M_ZERO); tlp_srom_media_info(sc, tsti, tm); tm->tm_type = type; tm->tm_get = get; tm->tm_set = set; ifmedia_add(&sc->sc_mii.mii_media, IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype, tsti->tsti_options, sc->sc_tlp_minst), 0, tm); } } static void tlp_print_media(struct tulip_softc *sc) { struct ifmedia_entry *ife; struct tulip_21x4x_media *tm; const char *sep = ""; #define PRINT(str) aprint_normal("%s%s", sep, str); sep = ", " aprint_normal_dev(sc->sc_dev, ""); TAILQ_FOREACH(ife, &sc->sc_mii.mii_media.ifm_list, ifm_list) { tm = ife->ifm_aux; if (tm == NULL) { #ifdef DIAGNOSTIC if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO) panic("tlp_print_media"); #endif PRINT("auto"); } else if (tm->tm_type != TULIP_ROM_MB_21140_MII && tm->tm_type != TULIP_ROM_MB_21142_MII) { PRINT(tm->tm_name); } } aprint_normal("\n"); #undef PRINT } static void tlp_nway_activate(struct tulip_softc *sc, int media) { struct ifmedia_entry *ife; ife = ifmedia_match(&sc->sc_mii.mii_media, media, 0); #ifdef DIAGNOSTIC if (ife == NULL) panic("tlp_nway_activate"); #endif sc->sc_nway_active = ife; } static void tlp_get_minst(struct tulip_softc *sc) { if ((sc->sc_media_seen & ~((1 << TULIP_ROM_MB_21140_MII) | (1 << TULIP_ROM_MB_21142_MII))) == 0) { /* * We have not yet seen any SIA/SYM media (but are * about to; that's why we're called!), so assign * the current media instance to be the `internal media' * instance, and advance it so any MII media gets a * fresh one (used to selecting/isolating a PHY). */ sc->sc_tlp_minst = sc->sc_mii.mii_instance++; } } /* * SIA Utility functions. */ static void tlp_sia_update_link(struct tulip_softc *); static void tlp_sia_get(struct tulip_softc *, struct ifmediareq *); static int tlp_sia_set(struct tulip_softc *); static int tlp_sia_media(struct tulip_softc *, struct ifmedia_entry *); static void tlp_sia_fixup(struct tulip_softc *); static void tlp_sia_update_link(struct tulip_softc *sc) { struct ifmedia_entry *ife; struct tulip_21x4x_media *tm; uint32_t siastat; ife = TULIP_CURRENT_MEDIA(sc); tm = ife->ifm_aux; sc->sc_flags &= ~(TULIPF_LINK_UP | TULIPF_LINK_VALID); siastat = TULIP_READ(sc, CSR_SIASTAT); /* * Note that when we do SIA link tests, we are assuming that * the chip is really in the mode that the current media setting * reflects. If we're not, then the link tests will not be * accurate! */ switch (IFM_SUBTYPE(ife->ifm_media)) { case IFM_10_T: sc->sc_flags |= TULIPF_LINK_VALID; if ((siastat & SIASTAT_LS10) == 0) sc->sc_flags |= TULIPF_LINK_UP; break; case IFM_100_TX: case IFM_100_T4: sc->sc_flags |= TULIPF_LINK_VALID; if ((siastat & SIASTAT_LS100) == 0) sc->sc_flags |= TULIPF_LINK_UP; break; } switch (sc->sc_chip) { case TULIP_CHIP_21142: case TULIP_CHIP_21143: /* * On these chips, we can tell more information about * AUI/BNC. Note that the AUI/BNC selection is made * in a different register; for our purpose, it's all * AUI. */ switch (IFM_SUBTYPE(ife->ifm_media)) { case IFM_10_2: case IFM_10_5: sc->sc_flags |= TULIPF_LINK_VALID; if (siastat & SIASTAT_ARA) { TULIP_WRITE(sc, CSR_SIASTAT, SIASTAT_ARA); sc->sc_flags |= TULIPF_LINK_UP; } break; default: /* * If we're SYM media and can detect the link * via the GPIO facility, prefer that status * over LS100. */ if (tm->tm_type == TULIP_ROM_MB_21143_SYM && tm->tm_actmask != 0) { sc->sc_flags = (sc->sc_flags & ~TULIPF_LINK_UP) | TULIPF_LINK_VALID; if (TULIP_ISSET(sc, CSR_SIAGEN, tm->tm_actmask) == tm->tm_actdata) sc->sc_flags |= TULIPF_LINK_UP; } } break; default: /* Nothing. */ break; } } static void tlp_sia_get(struct tulip_softc *sc, struct ifmediareq *ifmr) { struct ifmedia_entry *ife; ifmr->ifm_status = 0; tlp_sia_update_link(sc); ife = TULIP_CURRENT_MEDIA(sc); if (sc->sc_flags & TULIPF_LINK_VALID) ifmr->ifm_status |= IFM_AVALID; if (sc->sc_flags & TULIPF_LINK_UP) ifmr->ifm_status |= IFM_ACTIVE; ifmr->ifm_active = ife->ifm_media; } static void tlp_sia_fixup(struct tulip_softc *sc) { struct ifmedia_entry *ife; struct tulip_21x4x_media *tm; uint32_t siaconn, siatxrx, siagen; switch (sc->sc_chip) { case TULIP_CHIP_82C115: case TULIP_CHIP_MX98713A: case TULIP_CHIP_MX98715: case TULIP_CHIP_MX98715A: case TULIP_CHIP_MX98715AEC_X: case TULIP_CHIP_MX98725: siaconn = PMAC_SIACONN_MASK; siatxrx = PMAC_SIATXRX_MASK; siagen = PMAC_SIAGEN_MASK; break; default: /* No fixups required on any other chips. */ return; } TAILQ_FOREACH(ife, &sc->sc_mii.mii_media.ifm_list, ifm_list) { tm = ife->ifm_aux; if (tm == NULL) continue; tm->tm_siaconn &= siaconn; tm->tm_siatxrx &= siatxrx; tm->tm_siagen &= siagen; } } static int tlp_sia_set(struct tulip_softc *sc) { return tlp_sia_media(sc, TULIP_CURRENT_MEDIA(sc)); } static int tlp_sia_media(struct tulip_softc *sc, struct ifmedia_entry *ife) { struct tulip_21x4x_media *tm; tm = ife->ifm_aux; /* * XXX This appears to be necessary on a bunch of the clone chips. */ delay(20000); /* * Idle the chip. */ tlp_idle(sc, OPMODE_ST | OPMODE_SR); /* * Program the SIA. It's important to write in this order, * resetting the SIA first. */ TULIP_WRITE(sc, CSR_SIACONN, 0); /* SRL bit clear */ delay(1000); TULIP_WRITE(sc, CSR_SIATXRX, tm->tm_siatxrx); switch (sc->sc_chip) { case TULIP_CHIP_21142: case TULIP_CHIP_21143: TULIP_WRITE(sc, CSR_SIAGEN, tm->tm_siagen | tm->tm_gpctl); TULIP_WRITE(sc, CSR_SIAGEN, tm->tm_siagen | tm->tm_gpdata); break; default: TULIP_WRITE(sc, CSR_SIAGEN, tm->tm_siagen); } TULIP_WRITE(sc, CSR_SIACONN, tm->tm_siaconn); /* * Set the OPMODE bits for this media and write OPMODE. * This will resume the transmit and receive processes. */ sc->sc_opmode = (sc->sc_opmode & ~OPMODE_MEDIA_BITS) | tm->tm_opmode; TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); return 0; } /* * 21140 GPIO utility functions. */ static void tlp_21140_gpio_update_link(struct tulip_softc *); static void tlp_21140_gpio_update_link(struct tulip_softc *sc) { struct ifmedia_entry *ife; struct tulip_21x4x_media *tm; ife = TULIP_CURRENT_MEDIA(sc); tm = ife->ifm_aux; sc->sc_flags &= ~(TULIPF_LINK_UP | TULIPF_LINK_VALID); if (tm->tm_actmask != 0) { sc->sc_flags |= TULIPF_LINK_VALID; if (TULIP_ISSET(sc, CSR_GPP, tm->tm_actmask) == tm->tm_actdata) sc->sc_flags |= TULIPF_LINK_UP; } } void tlp_21140_gpio_get(struct tulip_softc *sc, struct ifmediareq *ifmr) { struct ifmedia_entry *ife; ifmr->ifm_status = 0; tlp_21140_gpio_update_link(sc); ife = TULIP_CURRENT_MEDIA(sc); if (sc->sc_flags & TULIPF_LINK_VALID) ifmr->ifm_status |= IFM_AVALID; if (sc->sc_flags & TULIPF_LINK_UP) ifmr->ifm_status |= IFM_ACTIVE; ifmr->ifm_active = ife->ifm_media; } int tlp_21140_gpio_set(struct tulip_softc *sc) { struct ifmedia_entry *ife; struct tulip_21x4x_media *tm; ife = TULIP_CURRENT_MEDIA(sc); tm = ife->ifm_aux; /* * Idle the chip. */ tlp_idle(sc, OPMODE_ST | OPMODE_SR); /* * Set the GPIO pins for this media, to flip any * relays, etc. */ TULIP_WRITE(sc, CSR_GPP, GPP_GPC | sc->sc_gp_dir); delay(10); TULIP_WRITE(sc, CSR_GPP, tm->tm_gpdata); /* * Set the OPMODE bits for this media and write OPMODE. * This will resume the transmit and receive processes. */ sc->sc_opmode = (sc->sc_opmode & ~OPMODE_MEDIA_BITS) | tm->tm_opmode; TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); return 0; } /* * 21040 and 21041 media switches. */ static void tlp_21040_tmsw_init(struct tulip_softc *); static void tlp_21040_tp_tmsw_init(struct tulip_softc *); static void tlp_21040_auibnc_tmsw_init(struct tulip_softc *); static void tlp_21041_tmsw_init(struct tulip_softc *); const struct tulip_mediasw tlp_21040_mediasw = { tlp_21040_tmsw_init, tlp_sia_get, tlp_sia_set }; const struct tulip_mediasw tlp_21040_tp_mediasw = { tlp_21040_tp_tmsw_init, tlp_sia_get, tlp_sia_set }; const struct tulip_mediasw tlp_21040_auibnc_mediasw = { tlp_21040_auibnc_tmsw_init, tlp_sia_get, tlp_sia_set }; const struct tulip_mediasw tlp_21041_mediasw = { tlp_21041_tmsw_init, tlp_sia_get, tlp_sia_set }; static void tlp_21040_tmsw_init(struct tulip_softc *sc) { struct mii_data * const mii = &sc->sc_mii; static const uint8_t media[] = { TULIP_ROM_MB_MEDIA_TP, TULIP_ROM_MB_MEDIA_TP_FDX, TULIP_ROM_MB_MEDIA_AUI, }; struct tulip_21x4x_media *tm; sc->sc_ethercom.ec_mii = mii; ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); tlp_add_srom_media(sc, 0, NULL, NULL, media, 3); /* * No SROM type for External SIA. */ tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK | M_ZERO); tm->tm_name = "manual"; tm->tm_opmode = 0; tm->tm_siaconn = SIACONN_21040_EXTSIA; tm->tm_siatxrx = SIATXRX_21040_EXTSIA; tm->tm_siagen = SIAGEN_21040_EXTSIA; ifmedia_add(&mii->mii_media, IFM_MAKEWORD(IFM_ETHER, IFM_MANUAL, 0, sc->sc_tlp_minst), 0, tm); /* * XXX Autosense not yet supported. */ /* XXX This should be auto-sense. */ ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_10_T); tlp_print_media(sc); } static void tlp_21040_tp_tmsw_init(struct tulip_softc *sc) { struct mii_data * const mii = &sc->sc_mii; static const uint8_t media[] = { TULIP_ROM_MB_MEDIA_TP, TULIP_ROM_MB_MEDIA_TP_FDX, }; sc->sc_ethercom.ec_mii = mii; ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); tlp_add_srom_media(sc, 0, NULL, NULL, media, 2); ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_10_T); tlp_print_media(sc); } static void tlp_21040_auibnc_tmsw_init(struct tulip_softc *sc) { struct mii_data * const mii = &sc->sc_mii; static const uint8_t media[] = { TULIP_ROM_MB_MEDIA_AUI, }; sc->sc_ethercom.ec_mii = mii; ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); tlp_add_srom_media(sc, 0, NULL, NULL, media, 1); ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_10_5); tlp_print_media(sc); } static void tlp_21041_tmsw_init(struct tulip_softc *sc) { struct mii_data * const mii = &sc->sc_mii; static const uint8_t media[] = { TULIP_ROM_MB_MEDIA_TP, TULIP_ROM_MB_MEDIA_TP_FDX, TULIP_ROM_MB_MEDIA_BNC, TULIP_ROM_MB_MEDIA_AUI, }; int i, defmedia, devcnt, leaf_offset, mb_offset, m_cnt; const struct tulip_srom_to_ifmedia *tsti; struct tulip_21x4x_media *tm; uint16_t romdef; uint8_t mb; sc->sc_ethercom.ec_mii = mii; ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); if (tlp_isv_srom(sc->sc_srom) == 0) { not_isv_srom: /* * If we have a board without the standard 21041 SROM format, * we just assume all media are present and try and pick a * reasonable default. */ tlp_add_srom_media(sc, 0, NULL, NULL, media, 4); /* * XXX Autosense not yet supported. */ /* XXX This should be auto-sense. */ ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_10_T); tlp_print_media(sc); return; } devcnt = sc->sc_srom[TULIP_ROM_CHIP_COUNT]; for (i = 0; i < devcnt; i++) { if (sc->sc_srom[TULIP_ROM_CHIP_COUNT] == 1) break; if (sc->sc_srom[TULIP_ROM_CHIPn_DEVICE_NUMBER(i)] == sc->sc_devno) break; } if (i == devcnt) goto not_isv_srom; leaf_offset = TULIP_ROM_GETW(sc->sc_srom, TULIP_ROM_CHIPn_INFO_LEAF_OFFSET(i)); mb_offset = leaf_offset + TULIP_ROM_IL_MEDIAn_BLOCK_BASE; m_cnt = sc->sc_srom[leaf_offset + TULIP_ROM_IL_MEDIA_COUNT]; for (; m_cnt != 0; m_cnt--, mb_offset += TULIP_ROM_MB_SIZE(mb)) { mb = sc->sc_srom[mb_offset]; tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK | M_ZERO); switch (mb & TULIP_ROM_MB_MEDIA_CODE) { case TULIP_ROM_MB_MEDIA_TP_FDX: case TULIP_ROM_MB_MEDIA_TP: case TULIP_ROM_MB_MEDIA_BNC: case TULIP_ROM_MB_MEDIA_AUI: tsti = tlp_srom_to_ifmedia(mb & TULIP_ROM_MB_MEDIA_CODE); tlp_srom_media_info(sc, tsti, tm); /* * Override our default SIA settings if the * SROM contains its own. */ if (mb & TULIP_ROM_MB_EXT) { tm->tm_siaconn = TULIP_ROM_GETW(sc->sc_srom, mb_offset + TULIP_ROM_MB_CSR13); tm->tm_siatxrx = TULIP_ROM_GETW(sc->sc_srom, mb_offset + TULIP_ROM_MB_CSR14); tm->tm_siagen = TULIP_ROM_GETW(sc->sc_srom, mb_offset + TULIP_ROM_MB_CSR15); } ifmedia_add(&mii->mii_media, IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype, tsti->tsti_options, sc->sc_tlp_minst), 0, tm); break; default: aprint_error_dev(sc->sc_dev, "unknown media code 0x%02x\n", mb & TULIP_ROM_MB_MEDIA_CODE); free(tm, M_DEVBUF); } } /* * XXX Autosense not yet supported. */ romdef = TULIP_ROM_GETW(sc->sc_srom, leaf_offset + TULIP_ROM_IL_SELECT_CONN_TYPE); switch (romdef) { case SELECT_CONN_TYPE_TP: case SELECT_CONN_TYPE_TP_AUTONEG: case SELECT_CONN_TYPE_TP_NOLINKPASS: defmedia = IFM_ETHER | IFM_10_T; break; case SELECT_CONN_TYPE_TP_FDX: defmedia = IFM_ETHER | IFM_10_T | IFM_FDX; break; case SELECT_CONN_TYPE_BNC: defmedia = IFM_ETHER | IFM_10_2; break; case SELECT_CONN_TYPE_AUI: defmedia = IFM_ETHER | IFM_10_5; break; #if 0 /* XXX */ case SELECT_CONN_TYPE_ASENSE: case SELECT_CONN_TYPE_ASENSE_AUTONEG: defmedia = IFM_ETHER | IFM_AUTO; break; #endif default: defmedia = 0; } if (defmedia == 0) { /* * XXX We should default to auto-sense. */ defmedia = IFM_ETHER | IFM_10_T; } ifmedia_set(&mii->mii_media, defmedia); tlp_print_media(sc); } /* * DECchip 2114x ISV media switch. */ static void tlp_2114x_isv_tmsw_init(struct tulip_softc *); static void tlp_2114x_isv_tmsw_get(struct tulip_softc *, struct ifmediareq *); static int tlp_2114x_isv_tmsw_set(struct tulip_softc *); const struct tulip_mediasw tlp_2114x_isv_mediasw = { tlp_2114x_isv_tmsw_init, tlp_2114x_isv_tmsw_get, tlp_2114x_isv_tmsw_set }; static void tlp_2114x_nway_get(struct tulip_softc *, struct ifmediareq *); static int tlp_2114x_nway_set(struct tulip_softc *); static void tlp_2114x_nway_statchg(struct ifnet *); static int tlp_2114x_nway_service(struct tulip_softc *, int); static void tlp_2114x_nway_auto(struct tulip_softc *); static void tlp_2114x_nway_status(struct tulip_softc *); static void tlp_2114x_isv_tmsw_init(struct tulip_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct mii_data * const mii = &sc->sc_mii; struct ifmedia_entry *ife; struct mii_softc *phy; struct tulip_21x4x_media *tm; const struct tulip_srom_to_ifmedia *tsti; int i, devcnt, leaf_offset, m_cnt, type, length; int defmedia, miidef; uint16_t word; uint8_t *cp, *ncp; defmedia = miidef = 0; mii->mii_ifp = ifp; mii->mii_readreg = tlp_bitbang_mii_readreg; mii->mii_writereg = tlp_bitbang_mii_writereg; mii->mii_statchg = sc->sc_statchg; sc->sc_ethercom.ec_mii = mii; /* * Ignore `instance'; we may get a mixture of SIA and MII * media, and `instance' is used to isolate or select the * PHY on the MII as appropriate. Note that duplicate media * are disallowed, so ignoring `instance' is safe. */ ifmedia_init(&mii->mii_media, IFM_IMASK, tlp_mediachange, tlp_mediastatus); devcnt = sc->sc_srom[TULIP_ROM_CHIP_COUNT]; for (i = 0; i < devcnt; i++) { if (sc->sc_srom[TULIP_ROM_CHIP_COUNT] == 1) break; if (sc->sc_srom[TULIP_ROM_CHIPn_DEVICE_NUMBER(i)] == sc->sc_devno) break; } if (i == devcnt) { aprint_error_dev(sc->sc_dev, "unable to locate info leaf in SROM\n"); return; } leaf_offset = TULIP_ROM_GETW(sc->sc_srom, TULIP_ROM_CHIPn_INFO_LEAF_OFFSET(i)); /* XXX SELECT CONN TYPE */ cp = &sc->sc_srom[leaf_offset + TULIP_ROM_IL_MEDIA_COUNT]; /* * On some chips, the first thing in the Info Leaf is the * GPIO pin direction data. */ switch (sc->sc_chip) { case TULIP_CHIP_21140: case TULIP_CHIP_21140A: case TULIP_CHIP_MX98713: case TULIP_CHIP_AX88140: case TULIP_CHIP_AX88141: sc->sc_gp_dir = *cp++; break; default: /* Nothing. */ break; } /* Get the media count. */ m_cnt = *cp++; if (m_cnt == 0) { sc->sc_mediasw = &tlp_sio_mii_mediasw; (*sc->sc_mediasw->tmsw_init)(sc); return; } for (; m_cnt != 0; cp = ncp, m_cnt--) { /* * Determine the type and length of this media block. * The 21143 is spec'd to always use extended format blocks, * but some cards don't set the bit to indicate this. * Hopefully there are no cards which really don't use * extended format blocks. */ if ((*cp & 0x80) == 0 && sc->sc_chip != TULIP_CHIP_21143) { length = 4; type = TULIP_ROM_MB_21140_GPR; } else { length = (*cp++ & 0x7f) - 1; type = *cp++ & 0x3f; } /* Compute the start of the next block. */ ncp = cp + length; /* Now, parse the block. */ switch (type) { case TULIP_ROM_MB_21140_GPR: tlp_get_minst(sc); sc->sc_media_seen |= 1 << TULIP_ROM_MB_21140_GPR; tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK | M_ZERO); tm->tm_type = TULIP_ROM_MB_21140_GPR; tm->tm_get = tlp_21140_gpio_get; tm->tm_set = tlp_21140_gpio_set; /* First is the media type code. */ tsti = tlp_srom_to_ifmedia(cp[0] & TULIP_ROM_MB_MEDIA_CODE); if (tsti == NULL) { /* Invalid media code. */ free(tm, M_DEVBUF); break; } /* Get defaults. */ tlp_srom_media_info(sc, tsti, tm); /* Next is any GPIO info for this media. */ tm->tm_gpdata = cp[1]; /* * Next is a word containing OPMODE information * and info on how to detect if this media is * active. */ word = TULIP_ROM_GETW(cp, 2); tm->tm_opmode &= OPMODE_FD; tm->tm_opmode |= TULIP_ROM_MB_OPMODE(word); if ((word & TULIP_ROM_MB_NOINDICATOR) == 0) { tm->tm_actmask = TULIP_ROM_MB_BITPOS(word); tm->tm_actdata = (word & TULIP_ROM_MB_POLARITY) ? 0 : tm->tm_actmask; } ifmedia_add(&mii->mii_media, IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype, tsti->tsti_options, sc->sc_tlp_minst), 0, tm); break; case TULIP_ROM_MB_21140_MII: sc->sc_media_seen |= 1 << TULIP_ROM_MB_21140_MII; tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK | M_ZERO); tm->tm_type = TULIP_ROM_MB_21140_MII; tm->tm_get = tlp_mii_getmedia; tm->tm_set = tlp_mii_setmedia; tm->tm_opmode = OPMODE_PS; if (sc->sc_reset == NULL) sc->sc_reset = tlp_21140_reset; /* First is the PHY number. */ tm->tm_phyno = *cp++; /* Next is the MII select sequence length and offset. */ tm->tm_gp_length = *cp++; tm->tm_gp_offset = cp - &sc->sc_srom[0]; cp += tm->tm_gp_length; /* Next is the MII reset sequence length and offset. */ tm->tm_reset_length = *cp++; tm->tm_reset_offset = cp - &sc->sc_srom[0]; cp += tm->tm_reset_length; /* * The following items are left in the media block * that we don't particularly care about: * * capabilities W * advertisement W * full duplex W * tx threshold W * * These appear to be bits in the PHY registers, * which our MII code handles on its own. */ /* * Before we probe the MII bus, we need to reset * it and issue the selection sequence. */ /* Set the direction of the pins... */ TULIP_WRITE(sc, CSR_GPP, GPP_GPC | sc->sc_gp_dir); for (i = 0; i < tm->tm_reset_length; i++) { delay(10); TULIP_WRITE(sc, CSR_GPP, sc->sc_srom[tm->tm_reset_offset + i]); } for (i = 0; i < tm->tm_gp_length; i++) { delay(10); TULIP_WRITE(sc, CSR_GPP, sc->sc_srom[tm->tm_gp_offset + i]); } /* If there were no sequences, just lower the pins. */ if (tm->tm_reset_length == 0 && tm->tm_gp_length == 0) { delay(10); TULIP_WRITE(sc, CSR_GPP, 0); } /* * Now, probe the MII for the PHY. Note, we know * the location of the PHY on the bus, but we don't * particularly care; the MII code just likes to * search the whole thing anyhow. */ mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, tm->tm_phyno, 0); /* * Now, search for the PHY we hopefully just * configured. If it's not configured into the * kernel, we lose. The PHY's default media always * takes priority. */ LIST_FOREACH(phy, &mii->mii_phys, mii_list) { if (phy->mii_offset == tm->tm_phyno) break; } if (phy == NULL) { aprint_error_dev(sc->sc_dev, "unable to configure MII\n"); break; } sc->sc_flags |= TULIPF_HAS_MII; sc->sc_tick = tlp_mii_tick; miidef = IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, phy->mii_inst); /* * Okay, now that we've found the PHY and the MII * layer has added all of the media associated * with that PHY, we need to traverse the media * list, and add our `tm' to each entry's `aux' * pointer. * * We do this by looking for media with our * PHY's `instance'. */ TAILQ_FOREACH(ife, &mii->mii_media.ifm_list, ifm_list) { if (IFM_INST(ife->ifm_media) != phy->mii_inst) continue; ife->ifm_aux = tm; } break; case TULIP_ROM_MB_21142_SIA: tlp_get_minst(sc); sc->sc_media_seen |= 1 << TULIP_ROM_MB_21142_SIA; tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK | M_ZERO); tm->tm_type = TULIP_ROM_MB_21142_SIA; tm->tm_get = tlp_sia_get; tm->tm_set = tlp_sia_set; /* First is the media type code. */ tsti = tlp_srom_to_ifmedia(cp[0] & TULIP_ROM_MB_MEDIA_CODE); if (tsti == NULL) { /* Invalid media code. */ free(tm, M_DEVBUF); break; } /* Get defaults. */ tlp_srom_media_info(sc, tsti, tm); /* * Override our default SIA settings if the * SROM contains its own. */ if (cp[0] & 0x40) { tm->tm_siaconn = TULIP_ROM_GETW(cp, 1); tm->tm_siatxrx = TULIP_ROM_GETW(cp, 3); tm->tm_siagen = TULIP_ROM_GETW(cp, 5); cp += 7; } else cp++; /* Next is GPIO control/data. */ tm->tm_gpctl = TULIP_ROM_GETW(cp, 0) << 16; tm->tm_gpdata = TULIP_ROM_GETW(cp, 2) << 16; ifmedia_add(&mii->mii_media, IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype, tsti->tsti_options, sc->sc_tlp_minst), 0, tm); break; case TULIP_ROM_MB_21142_MII: sc->sc_media_seen |= 1 << TULIP_ROM_MB_21142_MII; tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK | M_ZERO); tm->tm_type = TULIP_ROM_MB_21142_MII; tm->tm_get = tlp_mii_getmedia; tm->tm_set = tlp_mii_setmedia; tm->tm_opmode = OPMODE_PS; if (sc->sc_reset == NULL) sc->sc_reset = tlp_21142_reset; /* First is the PHY number. */ tm->tm_phyno = *cp++; /* Next is the MII select sequence length and offset. */ tm->tm_gp_length = *cp++; tm->tm_gp_offset = cp - &sc->sc_srom[0]; cp += tm->tm_gp_length * 2; /* Next is the MII reset sequence length and offset. */ tm->tm_reset_length = *cp++; tm->tm_reset_offset = cp - &sc->sc_srom[0]; cp += tm->tm_reset_length * 2; /* * The following items are left in the media block * that we don't particularly care about: * * capabilities W * advertisement W * full duplex W * tx threshold W * MII interrupt W * * These appear to be bits in the PHY registers, * which our MII code handles on its own. */ /* * Before we probe the MII bus, we need to reset * it and issue the selection sequence. */ cp = &sc->sc_srom[tm->tm_reset_offset]; for (i = 0; i < tm->tm_reset_length; i++, cp += 2) { delay(10); TULIP_WRITE(sc, CSR_SIAGEN, TULIP_ROM_GETW(cp, 0) << 16); } cp = &sc->sc_srom[tm->tm_gp_offset]; for (i = 0; i < tm->tm_gp_length; i++, cp += 2) { delay(10); TULIP_WRITE(sc, CSR_SIAGEN, TULIP_ROM_GETW(cp, 0) << 16); } /* If there were no sequences, just lower the pins. */ if (tm->tm_reset_length == 0 && tm->tm_gp_length == 0) { delay(10); TULIP_WRITE(sc, CSR_SIAGEN, 0); } /* * Now, probe the MII for the PHY. Note, we know * the location of the PHY on the bus, but we don't * particularly care; the MII code just likes to * search the whole thing anyhow. */ mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, tm->tm_phyno, 0); /* * Now, search for the PHY we hopefully just * configured. If it's not configured into the * kernel, we lose. The PHY's default media always * takes priority. */ LIST_FOREACH(phy, &mii->mii_phys, mii_list) { if (phy->mii_offset == tm->tm_phyno) break; } if (phy == NULL) { aprint_error_dev(sc->sc_dev, "unable to configure MII\n"); break; } sc->sc_flags |= TULIPF_HAS_MII; sc->sc_tick = tlp_mii_tick; miidef = IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, phy->mii_inst); /* * Okay, now that we've found the PHY and the MII * layer has added all of the media associated * with that PHY, we need to traverse the media * list, and add our `tm' to each entry's `aux' * pointer. * * We do this by looking for media with our * PHY's `instance'. */ TAILQ_FOREACH(ife, &mii->mii_media.ifm_list, ifm_list) { if (IFM_INST(ife->ifm_media) != phy->mii_inst) continue; ife->ifm_aux = tm; } break; case TULIP_ROM_MB_21143_SYM: tlp_get_minst(sc); sc->sc_media_seen |= 1 << TULIP_ROM_MB_21143_SYM; tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK | M_ZERO); tm->tm_type = TULIP_ROM_MB_21143_SYM; tm->tm_get = tlp_sia_get; tm->tm_set = tlp_sia_set; /* First is the media type code. */ tsti = tlp_srom_to_ifmedia(cp[0] & TULIP_ROM_MB_MEDIA_CODE); if (tsti == NULL) { /* Invalid media code. */ free(tm, M_DEVBUF); break; } /* Get defaults. */ tlp_srom_media_info(sc, tsti, tm); /* Next is GPIO control/data. */ tm->tm_gpctl = TULIP_ROM_GETW(cp, 1) << 16; tm->tm_gpdata = TULIP_ROM_GETW(cp, 3) << 16; /* * Next is a word containing OPMODE information * and info on how to detect if this media is * active. */ word = TULIP_ROM_GETW(cp, 5); tm->tm_opmode &= OPMODE_FD; tm->tm_opmode |= TULIP_ROM_MB_OPMODE(word); if ((word & TULIP_ROM_MB_NOINDICATOR) == 0) { tm->tm_actmask = TULIP_ROM_MB_BITPOS(word); tm->tm_actdata = (word & TULIP_ROM_MB_POLARITY) ? 0 : tm->tm_actmask; } ifmedia_add(&mii->mii_media, IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype, tsti->tsti_options, sc->sc_tlp_minst), 0, tm); break; case TULIP_ROM_MB_21143_RESET: aprint_normal_dev(sc->sc_dev, "21143 reset block\n"); break; default: aprint_error_dev(sc->sc_dev, "unknown ISV media block type 0x%02x\n", type); } } /* * Deal with the case where no media is configured. */ if (TAILQ_FIRST(&mii->mii_media.ifm_list) == NULL) { aprint_error_dev(sc->sc_dev, "no media found!\n"); ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); return; } /* * Pick the default media. */ if (miidef != 0) defmedia = miidef; else { switch (sc->sc_chip) { case TULIP_CHIP_21140: case TULIP_CHIP_21140A: /* XXX should come from SROM */ defmedia = IFM_MAKEWORD(IFM_ETHER, IFM_10_T, 0, 0); if (ifmedia_match(&mii->mii_media, defmedia, mii->mii_media.ifm_mask) == NULL) { /* * There is not a 10baseT media. * Fall back to the first found one. */ ife = TAILQ_FIRST(&mii->mii_media.ifm_list); defmedia = ife->ifm_media; } break; case TULIP_CHIP_21142: case TULIP_CHIP_21143: case TULIP_CHIP_MX98713A: case TULIP_CHIP_MX98715: case TULIP_CHIP_MX98715A: case TULIP_CHIP_MX98715AEC_X: case TULIP_CHIP_MX98725: tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK | M_ZERO); tm->tm_name = "auto"; tm->tm_get = tlp_2114x_nway_get; tm->tm_set = tlp_2114x_nway_set; defmedia = IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0); ifmedia_add(&mii->mii_media, defmedia, 0, tm); sc->sc_statchg = tlp_2114x_nway_statchg; sc->sc_tick = tlp_2114x_nway_tick; break; default: defmedia = IFM_MAKEWORD(IFM_ETHER, IFM_10_T, 0, 0); break; } } ifmedia_set(&mii->mii_media, defmedia); /* * Display any non-MII media we've located. */ if (sc->sc_media_seen & ~((1 << TULIP_ROM_MB_21140_MII) | (1 << TULIP_ROM_MB_21142_MII))) tlp_print_media(sc); tlp_sia_fixup(sc); } static void tlp_2114x_nway_get(struct tulip_softc *sc, struct ifmediareq *ifmr) { (void) tlp_2114x_nway_service(sc, MII_POLLSTAT); ifmr->ifm_status = sc->sc_mii.mii_media_status; ifmr->ifm_active = sc->sc_mii.mii_media_active; } static int tlp_2114x_nway_set(struct tulip_softc *sc) { return tlp_2114x_nway_service(sc, MII_MEDIACHG); } static void tlp_2114x_nway_statchg(struct ifnet *ifp) { struct tulip_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_mii; struct ifmedia_entry *ife; if (IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE) return; if ((ife = ifmedia_match(&mii->mii_media, mii->mii_media_active, mii->mii_media.ifm_mask)) == NULL) { printf("tlp_2114x_nway_statchg: no match for media 0x%x/0x%x\n", mii->mii_media_active, ~mii->mii_media.ifm_mask); panic("tlp_2114x_nway_statchg"); } tlp_sia_media(sc, ife); } static void tlp_2114x_nway_tick(void *arg) { struct tulip_softc *sc = arg; struct mii_data *mii = &sc->sc_mii; int s, ticks; if (!device_is_active(sc->sc_dev)) return; s = splnet(); tlp_2114x_nway_service(sc, MII_TICK); if ((sc->sc_flags & TULIPF_LINK_UP) == 0 && (mii->mii_media_status & IFM_ACTIVE) != 0 && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { sc->sc_flags |= TULIPF_LINK_UP; tlp_start(&sc->sc_ethercom.ec_if); } else if ((sc->sc_flags & TULIPF_LINK_UP) != 0 && (mii->mii_media_status & IFM_ACTIVE) == 0) { sc->sc_flags &= ~TULIPF_LINK_UP; } splx(s); if ((sc->sc_flags & TULIPF_LINK_UP) == 0) ticks = hz >> 3; else ticks = hz; callout_reset(&sc->sc_tick_callout, ticks, tlp_2114x_nway_tick, sc); } /* * Support for the 2114X internal NWay block. This is constructed * somewhat like a PHY driver for simplicity. */ static int tlp_2114x_nway_service(struct tulip_softc *sc, int cmd) { struct mii_data *mii = &sc->sc_mii; struct ifmedia_entry *ife = mii->mii_media.ifm_cur; if ((mii->mii_ifp->if_flags & IFF_UP) == 0) return 0; switch (cmd) { case MII_POLLSTAT: /* Nothing special to do here. */ break; case MII_MEDIACHG: switch (IFM_SUBTYPE(ife->ifm_media)) { case IFM_AUTO: goto restart; default: /* Manual setting doesn't go through here. */ printf("tlp_2114x_nway_service: oops!\n"); return EINVAL; } break; case MII_TICK: /* * Only used for autonegotiation. */ if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO) break; /* * Check to see if we have link. If we do, we don't * need to restart the autonegotiation process. */ #if 0 if (mii->mii_media_status & IFM_ACTIVE) #else if (sc->sc_flags & TULIPF_LINK_UP) #endif break; /* * Only retry autonegotiation every 5 seconds. */ if (++sc->sc_nway_ticks != (5 << 3)) break; restart: sc->sc_nway_ticks = 0; ife->ifm_data = IFM_NONE; tlp_2114x_nway_auto(sc); break; } /* Update the media status. */ tlp_2114x_nway_status(sc); /* * Callback if something changed. Manually configuration goes through * tlp_sia_set() anyway, so ignore that here. */ if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO && ife->ifm_data != mii->mii_media_active) { (*sc->sc_statchg)(mii->mii_ifp); ife->ifm_data = mii->mii_media_active; } return 0; } static void tlp_2114x_nway_auto(struct tulip_softc *sc) { uint32_t siastat, siatxrx; tlp_idle(sc, OPMODE_ST | OPMODE_SR); sc->sc_opmode &= ~(OPMODE_PS | OPMODE_PCS | OPMODE_SCR | OPMODE_FD); sc->sc_opmode |= OPMODE_TTM | OPMODE_HBD; siatxrx = 0xffbf; /* XXX magic number */ /* Compute the link code word to advertise. */ if (sc->sc_sia_cap & BMSR_100T4) siatxrx |= SIATXRX_T4; if (sc->sc_sia_cap & BMSR_100TXFDX) siatxrx |= SIATXRX_TXF; if (sc->sc_sia_cap & BMSR_100TXHDX) siatxrx |= SIATXRX_THX; if (sc->sc_sia_cap & BMSR_10TFDX) sc->sc_opmode |= OPMODE_FD; if (sc->sc_sia_cap & BMSR_10THDX) siatxrx |= SIATXRX_TH; TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); TULIP_WRITE(sc, CSR_SIACONN, 0); delay(1000); TULIP_WRITE(sc, CSR_SIATXRX, siatxrx); TULIP_WRITE(sc, CSR_SIACONN, SIACONN_SRL); siastat = TULIP_READ(sc, CSR_SIASTAT); siastat &= ~(SIASTAT_ANS | SIASTAT_LPC | SIASTAT_TRA | SIASTAT_ARA | SIASTAT_LS100 | SIASTAT_LS10 | SIASTAT_MRA); siastat |= SIASTAT_ANS_TXDIS; TULIP_WRITE(sc, CSR_SIASTAT, siastat); } static void tlp_2114x_nway_status(struct tulip_softc *sc) { struct mii_data *mii = &sc->sc_mii; uint32_t siatxrx, siastat, anlpar; mii->mii_media_status = IFM_AVALID; mii->mii_media_active = IFM_ETHER; if ((mii->mii_ifp->if_flags & IFF_UP) == 0) return; siastat = TULIP_READ(sc, CSR_SIASTAT); siatxrx = TULIP_READ(sc, CSR_SIATXRX); if (siatxrx & SIATXRX_ANE) { if ((siastat & SIASTAT_ANS) != SIASTAT_ANS_FLPGOOD) { /* Erg, still trying, I guess... */ mii->mii_media_active |= IFM_NONE; return; } if (~siastat & (SIASTAT_LS10 | SIASTAT_LS100)) mii->mii_media_status |= IFM_ACTIVE; if (siastat & SIASTAT_LPN) { anlpar = SIASTAT_GETLPC(siastat); if (anlpar & ANLPAR_T4 && sc->sc_sia_cap & BMSR_100T4) mii->mii_media_active |= IFM_100_T4; else if (anlpar & ANLPAR_TX_FD && sc->sc_sia_cap & BMSR_100TXFDX) mii->mii_media_active |= IFM_100_TX | IFM_FDX; else if (anlpar & ANLPAR_TX && sc->sc_sia_cap & BMSR_100TXHDX) mii->mii_media_active |= IFM_100_TX; else if (anlpar & ANLPAR_10_FD && sc->sc_sia_cap & BMSR_10TFDX) mii->mii_media_active |= IFM_10_T | IFM_FDX; else if (anlpar & ANLPAR_10 && sc->sc_sia_cap & BMSR_10THDX) mii->mii_media_active |= IFM_10_T; else mii->mii_media_active |= IFM_NONE; } else { /* * If the other side doesn't support NWAY, then the * best we can do is determine if we have a 10Mbps or * 100Mbps link. There's no way to know if the link * is full or half duplex, so we default to half duplex * and hope that the user is clever enough to manually * change the media settings if we're wrong. */ if ((siastat & SIASTAT_LS100) == 0) mii->mii_media_active |= IFM_100_TX; else if ((siastat & SIASTAT_LS10) == 0) mii->mii_media_active |= IFM_10_T; else mii->mii_media_active |= IFM_NONE; } } else { if (~siastat & (SIASTAT_LS10 | SIASTAT_LS100)) mii->mii_media_status |= IFM_ACTIVE; if (sc->sc_opmode & OPMODE_TTM) mii->mii_media_active |= IFM_10_T; else mii->mii_media_active |= IFM_100_TX; if (sc->sc_opmode & OPMODE_FD) mii->mii_media_active |= IFM_FDX; } } static void tlp_2114x_isv_tmsw_get(struct tulip_softc *sc, struct ifmediareq *ifmr) { struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur; struct tulip_21x4x_media *tm = ife->ifm_aux; (*tm->tm_get)(sc, ifmr); } static int tlp_2114x_isv_tmsw_set(struct tulip_softc *sc) { struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur; struct tulip_21x4x_media *tm = ife->ifm_aux; /* * Check to see if we need to reset the chip, and do it. The * reset path will get the OPMODE register right the next * time through. */ if (TULIP_MEDIA_NEEDSRESET(sc, tm->tm_opmode)) return tlp_init(&sc->sc_ethercom.ec_if); return (*tm->tm_set)(sc); } /* * MII-on-SIO media switch. Handles only MII attached to the SIO. */ static void tlp_sio_mii_tmsw_init(struct tulip_softc *); const struct tulip_mediasw tlp_sio_mii_mediasw = { tlp_sio_mii_tmsw_init, tlp_mii_getmedia, tlp_mii_setmedia }; static void tlp_sio_mii_tmsw_init(struct tulip_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct mii_data * const mii = &sc->sc_mii; /* * We don't attach any media info structures to the ifmedia * entries, so if we're using a pre-init function that needs * that info, override it to one that doesn't. */ if (sc->sc_preinit == tlp_2114x_preinit) sc->sc_preinit = tlp_2114x_mii_preinit; mii->mii_ifp = ifp; mii->mii_readreg = tlp_bitbang_mii_readreg; mii->mii_writereg = tlp_bitbang_mii_writereg; mii->mii_statchg = sc->sc_statchg; sc->sc_ethercom.ec_mii = mii; ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (LIST_FIRST(&mii->mii_phys) == NULL) { ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); } else { sc->sc_flags |= TULIPF_HAS_MII; sc->sc_tick = tlp_mii_tick; ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); } } /* * Lite-On PNIC media switch. Must handle MII or internal NWAY. */ static void tlp_pnic_tmsw_init(struct tulip_softc *); static void tlp_pnic_tmsw_get(struct tulip_softc *, struct ifmediareq *); static int tlp_pnic_tmsw_set(struct tulip_softc *); const struct tulip_mediasw tlp_pnic_mediasw = { tlp_pnic_tmsw_init, tlp_pnic_tmsw_get, tlp_pnic_tmsw_set }; static void tlp_pnic_nway_statchg(struct ifnet *); static void tlp_pnic_nway_tick(void *); static int tlp_pnic_nway_service(struct tulip_softc *, int); static void tlp_pnic_nway_reset(struct tulip_softc *); static int tlp_pnic_nway_auto(struct tulip_softc *, int); static void tlp_pnic_nway_auto_timeout(void *); static void tlp_pnic_nway_status(struct tulip_softc *); static void tlp_pnic_nway_acomp(struct tulip_softc *); static void tlp_pnic_tmsw_init(struct tulip_softc *sc) { struct mii_data * const mii = &sc->sc_mii; struct ifnet *ifp = &sc->sc_ethercom.ec_if; const char *sep = ""; #define ADD(m, c) ifmedia_add(&mii->mii_media, (m), (c), NULL) #define PRINT(str) aprint_normal("%s%s", sep, str); sep = ", " mii->mii_ifp = ifp; mii->mii_readreg = tlp_pnic_mii_readreg; mii->mii_writereg = tlp_pnic_mii_writereg; mii->mii_statchg = sc->sc_statchg; sc->sc_ethercom.ec_mii = mii; ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (LIST_FIRST(&mii->mii_phys) == NULL) { /* XXX What about AUI/BNC support? */ aprint_normal_dev(sc->sc_dev, ""); tlp_pnic_nway_reset(sc); ADD(IFM_MAKEWORD(IFM_ETHER, IFM_10_T, 0, 0), PNIC_NWAY_TW | PNIC_NWAY_CAP10T); PRINT("10baseT"); ADD(IFM_MAKEWORD(IFM_ETHER, IFM_10_T, IFM_FDX, 0), PNIC_NWAY_TW | PNIC_NWAY_FD | PNIC_NWAY_CAP10TFDX); PRINT("10baseT-FDX"); ADD(IFM_MAKEWORD(IFM_ETHER, IFM_100_TX, 0, 0), PNIC_NWAY_TW | PNIC_NWAY_100 | PNIC_NWAY_CAP100TX); PRINT("100baseTX"); ADD(IFM_MAKEWORD(IFM_ETHER, IFM_100_TX, IFM_FDX, 0), PNIC_NWAY_TW | PNIC_NWAY_100 | PNIC_NWAY_FD | PNIC_NWAY_CAP100TXFDX); PRINT("100baseTX-FDX"); ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), PNIC_NWAY_TW | PNIC_NWAY_RN | PNIC_NWAY_NW | PNIC_NWAY_CAP10T | PNIC_NWAY_CAP10TFDX | PNIC_NWAY_CAP100TXFDX | PNIC_NWAY_CAP100TX); PRINT("auto"); aprint_normal("\n"); sc->sc_statchg = tlp_pnic_nway_statchg; sc->sc_tick = tlp_pnic_nway_tick; ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); } else { sc->sc_flags |= TULIPF_HAS_MII; sc->sc_tick = tlp_mii_tick; ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); } #undef ADD #undef PRINT } static void tlp_pnic_tmsw_get(struct tulip_softc *sc, struct ifmediareq *ifmr) { struct mii_data *mii = &sc->sc_mii; if (sc->sc_flags & TULIPF_HAS_MII) tlp_mii_getmedia(sc, ifmr); else { mii->mii_media_status = 0; mii->mii_media_active = IFM_NONE; tlp_pnic_nway_service(sc, MII_POLLSTAT); ifmr->ifm_status = mii->mii_media_status; ifmr->ifm_active = mii->mii_media_active; } } static int tlp_pnic_tmsw_set(struct tulip_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct mii_data *mii = &sc->sc_mii; if (sc->sc_flags & TULIPF_HAS_MII) { /* * Make sure the built-in Tx jabber timer is disabled. */ TULIP_WRITE(sc, CSR_PNIC_ENDEC, PNIC_ENDEC_JDIS); return tlp_mii_setmedia(sc); } if (ifp->if_flags & IFF_UP) { mii->mii_media_status = 0; mii->mii_media_active = IFM_NONE; return tlp_pnic_nway_service(sc, MII_MEDIACHG); } return 0; } static void tlp_pnic_nway_statchg(struct ifnet *ifp) { struct tulip_softc *sc = ifp->if_softc; /* Idle the transmit and receive processes. */ tlp_idle(sc, OPMODE_ST | OPMODE_SR); sc->sc_opmode &= ~(OPMODE_TTM | OPMODE_FD | OPMODE_PS | OPMODE_PCS | OPMODE_SCR | OPMODE_HBD); if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_10_T) { sc->sc_opmode |= OPMODE_TTM; TULIP_WRITE(sc, CSR_GPP, GPP_PNIC_OUT(GPP_PNIC_PIN_SPEED_RLY, 0) | GPP_PNIC_OUT(GPP_PNIC_PIN_100M_LPKB, 1)); } else { sc->sc_opmode |= OPMODE_PS |OPMODE_PCS |OPMODE_SCR |OPMODE_HBD; TULIP_WRITE(sc, CSR_GPP, GPP_PNIC_OUT(GPP_PNIC_PIN_SPEED_RLY, 1) | GPP_PNIC_OUT(GPP_PNIC_PIN_100M_LPKB, 1)); } if (sc->sc_mii.mii_media_active & IFM_FDX) sc->sc_opmode |= OPMODE_FD | OPMODE_HBD; /* * Write new OPMODE bits. This also restarts the transmit * and receive processes. */ TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); } static void tlp_pnic_nway_tick(void *arg) { struct tulip_softc *sc = arg; int s; if (!device_is_active(sc->sc_dev)) return; s = splnet(); tlp_pnic_nway_service(sc, MII_TICK); splx(s); callout_reset(&sc->sc_tick_callout, hz, tlp_pnic_nway_tick, sc); } /* * Support for the Lite-On PNIC internal NWay block. This is constructed * somewhat like a PHY driver for simplicity. */ static int tlp_pnic_nway_service(struct tulip_softc *sc, int cmd) { struct mii_data *mii = &sc->sc_mii; struct ifmedia_entry *ife = mii->mii_media.ifm_cur; if ((mii->mii_ifp->if_flags & IFF_UP) == 0) return 0; switch (cmd) { case MII_POLLSTAT: /* Nothing special to do here. */ break; case MII_MEDIACHG: switch (IFM_SUBTYPE(ife->ifm_media)) { case IFM_AUTO: (void) tlp_pnic_nway_auto(sc, 1); break; case IFM_100_T4: /* * XXX Not supported as a manual setting right now. */ return EINVAL; default: /* * NWAY register data is stored in the ifmedia entry. */ TULIP_WRITE(sc, CSR_PNIC_NWAY, ife->ifm_data); } break; case MII_TICK: /* * Only used for autonegotiation. */ if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO) return 0; /* * Check to see if we have link. If we do, we don't * need to restart the autonegotiation process. */ if (sc->sc_flags & TULIPF_LINK_UP) return 0; /* * Only retry autonegotiation every 5 seconds. */ if (++sc->sc_nway_ticks != 5) return 0; sc->sc_nway_ticks = 0; tlp_pnic_nway_reset(sc); if (tlp_pnic_nway_auto(sc, 0) == EJUSTRETURN) return 0; break; } /* Update the media status. */ tlp_pnic_nway_status(sc); /* Callback if something changed. */ if ((sc->sc_nway_active == NULL || sc->sc_nway_active->ifm_media != mii->mii_media_active) || cmd == MII_MEDIACHG) { (*sc->sc_statchg)(mii->mii_ifp); tlp_nway_activate(sc, mii->mii_media_active); } return 0; } static void tlp_pnic_nway_reset(struct tulip_softc *sc) { TULIP_WRITE(sc, CSR_PNIC_NWAY, PNIC_NWAY_RS); delay(100); TULIP_WRITE(sc, CSR_PNIC_NWAY, 0); } static int tlp_pnic_nway_auto(struct tulip_softc *sc, int waitfor) { struct mii_data *mii = &sc->sc_mii; struct ifmedia_entry *ife = mii->mii_media.ifm_cur; uint32_t reg; int i; if ((sc->sc_flags & TULIPF_DOINGAUTO) == 0) TULIP_WRITE(sc, CSR_PNIC_NWAY, ife->ifm_data); if (waitfor) { /* Wait 500ms for it to complete. */ for (i = 0; i < 500; i++) { reg = TULIP_READ(sc, CSR_PNIC_NWAY); if (reg & PNIC_NWAY_LPAR_MASK) { tlp_pnic_nway_acomp(sc); return 0; } delay(1000); } #if 0 if ((reg & PNIC_NWAY_LPAR_MASK) == 0) aprint_error_dev(sc->sc_dev, "autonegotiation failed to complete\n"); #endif /* * Don't need to worry about clearing DOINGAUTO. * If that's set, a timeout is pending, and it will * clear the flag. */ return EIO; } /* * Just let it finish asynchronously. This is for the benefit of * the tick handler driving autonegotiation. Don't want 500ms * delays all the time while the system is running! */ if ((sc->sc_flags & TULIPF_DOINGAUTO) == 0) { sc->sc_flags |= TULIPF_DOINGAUTO; callout_reset(&sc->sc_nway_callout, hz >> 1, tlp_pnic_nway_auto_timeout, sc); } return EJUSTRETURN; } static void tlp_pnic_nway_auto_timeout(void *arg) { struct tulip_softc *sc = arg; /* uint32_t reg; */ int s; s = splnet(); sc->sc_flags &= ~TULIPF_DOINGAUTO; /* reg = */ TULIP_READ(sc, CSR_PNIC_NWAY); #if 0 if ((reg & PNIC_NWAY_LPAR_MASK) == 0) aprint_error_dev(sc->sc_dev, "autonegotiation failed to complete\n"); #endif tlp_pnic_nway_acomp(sc); /* Update the media status. */ (void)tlp_pnic_nway_service(sc, MII_POLLSTAT); splx(s); } static void tlp_pnic_nway_status(struct tulip_softc *sc) { struct mii_data *mii = &sc->sc_mii; uint32_t reg; mii->mii_media_status = IFM_AVALID; mii->mii_media_active = IFM_ETHER; reg = TULIP_READ(sc, CSR_PNIC_NWAY); if (sc->sc_flags & TULIPF_LINK_UP) mii->mii_media_status |= IFM_ACTIVE; if (reg & PNIC_NWAY_NW) { if ((reg & PNIC_NWAY_LPAR_MASK) == 0) { /* Erg, still trying, I guess... */ mii->mii_media_active |= IFM_NONE; return; } #if 0 if (reg & PNIC_NWAY_LPAR100T4) mii->mii_media_active |= IFM_100_T4; else #endif if (reg & PNIC_NWAY_LPAR100TXFDX) mii->mii_media_active |= IFM_100_TX | IFM_FDX; else if (reg & PNIC_NWAY_LPAR100TX) mii->mii_media_active |= IFM_100_TX; else if (reg & PNIC_NWAY_LPAR10TFDX) mii->mii_media_active |= IFM_10_T | IFM_FDX; else if (reg & PNIC_NWAY_LPAR10T) mii->mii_media_active |= IFM_10_T; else mii->mii_media_active |= IFM_NONE; } else { if (reg & PNIC_NWAY_100) mii->mii_media_active |= IFM_100_TX; else mii->mii_media_active |= IFM_10_T; if (reg & PNIC_NWAY_FD) mii->mii_media_active |= IFM_FDX; } } static void tlp_pnic_nway_acomp(struct tulip_softc *sc) { uint32_t reg; reg = TULIP_READ(sc, CSR_PNIC_NWAY); reg &= ~(PNIC_NWAY_FD | PNIC_NWAY_100 | PNIC_NWAY_RN); if (reg & (PNIC_NWAY_LPAR100TXFDX | PNIC_NWAY_LPAR100TX)) reg |= PNIC_NWAY_100; if (reg & (PNIC_NWAY_LPAR10TFDX | PNIC_NWAY_LPAR100TXFDX)) reg |= PNIC_NWAY_FD; TULIP_WRITE(sc, CSR_PNIC_NWAY, reg); } /* * Macronix PMAC and Lite-On PNIC-II media switch: * * MX98713 and MX98713A 21140-like MII or GPIO media. * * MX98713A 21143-like MII or SIA/SYM media. * * MX98715, MX98715A, MX98725, 21143-like SIA/SYM media. * 82C115, MX98715AEC-C, -E * * So, what we do here is fake MII-on-SIO or ISV media info, and * use the ISV media switch get/set functions to handle the rest. */ static void tlp_pmac_tmsw_init(struct tulip_softc *); const struct tulip_mediasw tlp_pmac_mediasw = { tlp_pmac_tmsw_init, tlp_2114x_isv_tmsw_get, tlp_2114x_isv_tmsw_set }; const struct tulip_mediasw tlp_pmac_mii_mediasw = { tlp_pmac_tmsw_init, tlp_mii_getmedia, tlp_mii_setmedia }; static void tlp_pmac_tmsw_init(struct tulip_softc *sc) { struct mii_data * const mii = &sc->sc_mii; static const uint8_t media[] = { TULIP_ROM_MB_MEDIA_TP, TULIP_ROM_MB_MEDIA_TP_FDX, TULIP_ROM_MB_MEDIA_100TX, TULIP_ROM_MB_MEDIA_100TX_FDX, }; struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct tulip_21x4x_media *tm; mii->mii_ifp = ifp; mii->mii_readreg = tlp_bitbang_mii_readreg; mii->mii_writereg = tlp_bitbang_mii_writereg; mii->mii_statchg = sc->sc_statchg; sc->sc_ethercom.ec_mii = mii; ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); if (sc->sc_chip == TULIP_CHIP_MX98713 || sc->sc_chip == TULIP_CHIP_MX98713A) { mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (LIST_FIRST(&mii->mii_phys) != NULL) { sc->sc_flags |= TULIPF_HAS_MII; sc->sc_tick = tlp_mii_tick; sc->sc_preinit = tlp_2114x_mii_preinit; sc->sc_mediasw = &tlp_pmac_mii_mediasw; ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); return; } } switch (sc->sc_chip) { case TULIP_CHIP_MX98713: tlp_add_srom_media(sc, TULIP_ROM_MB_21140_GPR, tlp_21140_gpio_get, tlp_21140_gpio_set, media, 4); /* * XXX Should implement auto-sense for this someday, * XXX when we do the same for the 21140. */ ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_10_T); break; default: tlp_add_srom_media(sc, TULIP_ROM_MB_21142_SIA, tlp_sia_get, tlp_sia_set, media, 2); tlp_add_srom_media(sc, TULIP_ROM_MB_21143_SYM, tlp_sia_get, tlp_sia_set, media + 2, 2); tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK | M_ZERO); tm->tm_name = "auto"; tm->tm_get = tlp_2114x_nway_get; tm->tm_set = tlp_2114x_nway_set; ifmedia_add(&mii->mii_media, IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 0, tm); ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); sc->sc_statchg = tlp_2114x_nway_statchg; sc->sc_tick = tlp_2114x_nway_tick; break; } tlp_print_media(sc); tlp_sia_fixup(sc); /* Set the LED modes. */ tlp_pmac_reset(sc); sc->sc_reset = tlp_pmac_reset; } /* * ADMtek AL981 media switch. Only has internal PHY. */ static void tlp_al981_tmsw_init(struct tulip_softc *); const struct tulip_mediasw tlp_al981_mediasw = { tlp_al981_tmsw_init, tlp_mii_getmedia, tlp_mii_setmedia }; static void tlp_al981_tmsw_init(struct tulip_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct mii_data * const mii = &sc->sc_mii; mii->mii_ifp = ifp; mii->mii_readreg = tlp_al981_mii_readreg; mii->mii_writereg = tlp_al981_mii_writereg; mii->mii_statchg = sc->sc_statchg; sc->sc_ethercom.ec_mii = mii; ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (LIST_FIRST(&mii->mii_phys) == NULL) { ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); } else { sc->sc_flags |= TULIPF_HAS_MII; sc->sc_tick = tlp_mii_tick; ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); } } /* * ADMtek AN983/985 media switch. Only has internal PHY, but * on an SIO-like interface. Unfortunately, we can't use the * standard SIO media switch, because the AN985 "ghosts" the * singly PHY at every address. */ static void tlp_an985_tmsw_init(struct tulip_softc *); const struct tulip_mediasw tlp_an985_mediasw = { tlp_an985_tmsw_init, tlp_mii_getmedia, tlp_mii_setmedia }; static void tlp_an985_tmsw_init(struct tulip_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct mii_data * const mii = &sc->sc_mii; mii->mii_ifp = ifp; mii->mii_readreg = tlp_bitbang_mii_readreg; mii->mii_writereg = tlp_bitbang_mii_writereg; mii->mii_statchg = sc->sc_statchg; sc->sc_ethercom.ec_mii = mii; ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); mii_attach(sc->sc_dev, mii, 0xffffffff, 1, MII_OFFSET_ANY, 0); if (LIST_FIRST(&mii->mii_phys) == NULL) { ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); } else { sc->sc_flags |= TULIPF_HAS_MII; sc->sc_tick = tlp_mii_tick; ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); } } /* * Davicom DM9102 media switch. Internal PHY and possibly HomePNA. */ static void tlp_dm9102_tmsw_init(struct tulip_softc *); static void tlp_dm9102_tmsw_getmedia(struct tulip_softc *, struct ifmediareq *); static int tlp_dm9102_tmsw_setmedia(struct tulip_softc *); const struct tulip_mediasw tlp_dm9102_mediasw = { tlp_dm9102_tmsw_init, tlp_dm9102_tmsw_getmedia, tlp_dm9102_tmsw_setmedia }; static void tlp_dm9102_tmsw_init(struct tulip_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct mii_data * const mii = &sc->sc_mii; uint32_t opmode; mii->mii_ifp = ifp; mii->mii_readreg = tlp_bitbang_mii_readreg; mii->mii_writereg = tlp_bitbang_mii_writereg; mii->mii_statchg = sc->sc_statchg; sc->sc_ethercom.ec_mii = mii; ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); /* PHY block already reset via tlp_reset(). */ /* * Configure OPMODE properly for the internal MII interface. */ switch (sc->sc_chip) { case TULIP_CHIP_DM9102: opmode = OPMODE_MBO | OPMODE_HBD | OPMODE_PS; break; case TULIP_CHIP_DM9102A: opmode = OPMODE_MBO | OPMODE_HBD; break; default: opmode = 0; break; } TULIP_WRITE(sc, CSR_OPMODE, opmode); /* Now, probe the internal MII for the internal PHY. */ mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); /* * XXX Figure out what to do about the HomePNA portion * XXX of the DM9102A. */ if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); } else { sc->sc_flags |= TULIPF_HAS_MII; sc->sc_tick = tlp_mii_tick; ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); } } static void tlp_dm9102_tmsw_getmedia(struct tulip_softc *sc, struct ifmediareq *ifmr) { /* XXX HomePNA on DM9102A. */ tlp_mii_getmedia(sc, ifmr); } static int tlp_dm9102_tmsw_setmedia(struct tulip_softc *sc) { /* XXX HomePNA on DM9102A. */ return tlp_mii_setmedia(sc); } /* * ASIX AX88140A/AX88141 media switch. Internal PHY or MII. */ static void tlp_asix_tmsw_init(struct tulip_softc *); static void tlp_asix_tmsw_getmedia(struct tulip_softc *, struct ifmediareq *); static int tlp_asix_tmsw_setmedia(struct tulip_softc *); const struct tulip_mediasw tlp_asix_mediasw = { tlp_asix_tmsw_init, tlp_asix_tmsw_getmedia, tlp_asix_tmsw_setmedia }; static void tlp_asix_tmsw_init(struct tulip_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct mii_data * const mii = &sc->sc_mii; uint32_t opmode; mii->mii_ifp = ifp; mii->mii_readreg = tlp_bitbang_mii_readreg; mii->mii_writereg = tlp_bitbang_mii_writereg; mii->mii_statchg = sc->sc_statchg; sc->sc_ethercom.ec_mii = mii; ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); /* * Configure OPMODE properly for the internal MII interface. */ switch (sc->sc_chip) { case TULIP_CHIP_AX88140: case TULIP_CHIP_AX88141: opmode = OPMODE_HBD | OPMODE_PS; break; default: opmode = 0; break; } TULIP_WRITE(sc, CSR_OPMODE, opmode); /* Now, probe the internal MII for the internal PHY. */ mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); /* XXX Figure how to handle the PHY. */ if (LIST_FIRST(&mii->mii_phys) == NULL) { ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); } else { sc->sc_flags |= TULIPF_HAS_MII; sc->sc_tick = tlp_mii_tick; ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); } } static void tlp_asix_tmsw_getmedia(struct tulip_softc *sc, struct ifmediareq *ifmr) { /* XXX PHY handling. */ tlp_mii_getmedia(sc, ifmr); } static int tlp_asix_tmsw_setmedia(struct tulip_softc *sc) { /* XXX PHY handling. */ return tlp_mii_setmedia(sc); } /* * RS7112 media switch. Handles only MII attached to the SIO. * We only have a PHY at 1. */ void tlp_rs7112_tmsw_init(struct tulip_softc *); const struct tulip_mediasw tlp_rs7112_mediasw = { tlp_rs7112_tmsw_init, tlp_mii_getmedia, tlp_mii_setmedia }; void tlp_rs7112_tmsw_init(struct tulip_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct mii_data * const mii = &sc->sc_mii; /* * We don't attach any media info structures to the ifmedia * entries, so if we're using a pre-init function that needs * that info, override it to one that doesn't. */ if (sc->sc_preinit == tlp_2114x_preinit) sc->sc_preinit = tlp_2114x_mii_preinit; mii->mii_ifp = ifp; mii->mii_readreg = tlp_bitbang_mii_readreg; mii->mii_writereg = tlp_bitbang_mii_writereg; mii->mii_statchg = sc->sc_statchg; sc->sc_ethercom.ec_mii = mii; ifmedia_init(&mii->mii_media, 0, tlp_mediachange, tlp_mediastatus); /* * The RS7112 reports a PHY at 0 (possibly HomePNA?) * and 1 (ethernet). We attach ethernet only. */ mii_attach(sc->sc_dev, mii, 0xffffffff, 1, MII_OFFSET_ANY, 0); if (LIST_FIRST(&mii->mii_phys) == NULL) { ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); } else { sc->sc_flags |= TULIPF_HAS_MII; sc->sc_tick = tlp_mii_tick; ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); } } const char * tlp_chip_name(tulip_chip_t t) { if ((int)t < 0 || (int)t >= __arraycount(tlp_chip_names)) { static char buf[256]; (void)snprintf(buf, sizeof(buf), "[unknown 0x%x]", t); return buf; } return tlp_chip_names[t]; }