/* $NetBSD: mfi.c,v 1.61.2.1 2022/05/17 10:29:47 bouyer Exp $ */ /* $OpenBSD: mfi.c,v 1.66 2006/11/28 23:59:45 dlg Exp $ */ /* * Copyright (c) 2012 Manuel Bouyer. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 2006 Marco Peereboom * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /*- * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Copyright 1994-2009 The FreeBSD Project. * All rights reserved. * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE FREEBSD PROJECT``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FREEBSD PROJECT OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY,OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION)HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation * are those of the authors and should not be interpreted as representing * official policies,either expressed or implied, of the FreeBSD Project. */ #include __KERNEL_RCSID(0, "$NetBSD: mfi.c,v 1.61.2.1 2022/05/17 10:29:47 bouyer Exp $"); #include "bio.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NBIO > 0 #include #endif /* NBIO > 0 */ #include "ioconf.h" #ifdef MFI_DEBUG uint32_t mfi_debug = 0 /* | MFI_D_CMD */ /* | MFI_D_INTR */ /* | MFI_D_MISC */ /* | MFI_D_DMA */ /* | MFI_D_IOCTL */ /* | MFI_D_RW */ /* | MFI_D_MEM */ /* | MFI_D_CCB */ /* | MFI_D_SYNC */ ; #endif static void mfi_scsipi_request(struct scsipi_channel *, scsipi_adapter_req_t, void *); static void mfiminphys(struct buf *bp); static struct mfi_ccb *mfi_get_ccb(struct mfi_softc *); static void mfi_put_ccb(struct mfi_ccb *); static int mfi_init_ccb(struct mfi_softc *); static struct mfi_mem *mfi_allocmem(struct mfi_softc *, size_t); static void mfi_freemem(struct mfi_softc *, struct mfi_mem **); static int mfi_transition_firmware(struct mfi_softc *); static int mfi_initialize_firmware(struct mfi_softc *); static int mfi_get_info(struct mfi_softc *); static int mfi_get_bbu(struct mfi_softc *, struct mfi_bbu_status *); /* return codes for mfi_get_bbu */ #define MFI_BBU_GOOD 0 #define MFI_BBU_BAD 1 #define MFI_BBU_UNKNOWN 2 static uint32_t mfi_read(struct mfi_softc *, bus_size_t); static void mfi_write(struct mfi_softc *, bus_size_t, uint32_t); static int mfi_poll(struct mfi_ccb *); static int mfi_create_sgl(struct mfi_ccb *, int); /* commands */ static int mfi_scsi_ld(struct mfi_ccb *, struct scsipi_xfer *); static int mfi_scsi_ld_io(struct mfi_ccb *, struct scsipi_xfer *, uint64_t, uint32_t); static void mfi_scsi_ld_done(struct mfi_ccb *); static void mfi_scsi_xs_done(struct mfi_ccb *, int, int); static int mfi_mgmt_internal(struct mfi_softc *, uint32_t, uint32_t, uint32_t, void *, const union mfi_mbox *, bool); static int mfi_mgmt(struct mfi_ccb *,struct scsipi_xfer *, uint32_t, uint32_t, uint32_t, void *, const union mfi_mbox *); static void mfi_mgmt_done(struct mfi_ccb *); #if NBIO > 0 static int mfi_ioctl(device_t, u_long, void *); static int mfi_ioctl_inq(struct mfi_softc *, struct bioc_inq *); static int mfi_ioctl_vol(struct mfi_softc *, struct bioc_vol *); static int mfi_ioctl_disk(struct mfi_softc *, struct bioc_disk *); static int mfi_ioctl_alarm(struct mfi_softc *, struct bioc_alarm *); static int mfi_ioctl_blink(struct mfi_softc *sc, struct bioc_blink *); static int mfi_ioctl_setstate(struct mfi_softc *, struct bioc_setstate *); static int mfi_bio_hs(struct mfi_softc *, int, int, void *); static int mfi_create_sensors(struct mfi_softc *); static int mfi_destroy_sensors(struct mfi_softc *); static void mfi_sensor_refresh(struct sysmon_envsys *, envsys_data_t *); #endif /* NBIO > 0 */ static bool mfi_shutdown(device_t, int); static bool mfi_suspend(device_t, const pmf_qual_t *); static bool mfi_resume(device_t, const pmf_qual_t *); static dev_type_open(mfifopen); static dev_type_close(mfifclose); static dev_type_ioctl(mfifioctl); const struct cdevsw mfi_cdevsw = { .d_open = mfifopen, .d_close = mfifclose, .d_read = noread, .d_write = nowrite, .d_ioctl = mfifioctl, .d_stop = nostop, .d_tty = notty, .d_poll = nopoll, .d_mmap = nommap, .d_kqfilter = nokqfilter, .d_discard = nodiscard, .d_flag = D_OTHER }; static uint32_t mfi_xscale_fw_state(struct mfi_softc *sc); static void mfi_xscale_intr_ena(struct mfi_softc *sc); static void mfi_xscale_intr_dis(struct mfi_softc *sc); static int mfi_xscale_intr(struct mfi_softc *sc); static void mfi_xscale_post(struct mfi_softc *sc, struct mfi_ccb *ccb); static const struct mfi_iop_ops mfi_iop_xscale = { mfi_xscale_fw_state, mfi_xscale_intr_dis, mfi_xscale_intr_ena, mfi_xscale_intr, mfi_xscale_post, mfi_scsi_ld_io, }; static uint32_t mfi_ppc_fw_state(struct mfi_softc *sc); static void mfi_ppc_intr_ena(struct mfi_softc *sc); static void mfi_ppc_intr_dis(struct mfi_softc *sc); static int mfi_ppc_intr(struct mfi_softc *sc); static void mfi_ppc_post(struct mfi_softc *sc, struct mfi_ccb *ccb); static const struct mfi_iop_ops mfi_iop_ppc = { mfi_ppc_fw_state, mfi_ppc_intr_dis, mfi_ppc_intr_ena, mfi_ppc_intr, mfi_ppc_post, mfi_scsi_ld_io, }; uint32_t mfi_gen2_fw_state(struct mfi_softc *sc); void mfi_gen2_intr_ena(struct mfi_softc *sc); void mfi_gen2_intr_dis(struct mfi_softc *sc); int mfi_gen2_intr(struct mfi_softc *sc); void mfi_gen2_post(struct mfi_softc *sc, struct mfi_ccb *ccb); static const struct mfi_iop_ops mfi_iop_gen2 = { mfi_gen2_fw_state, mfi_gen2_intr_dis, mfi_gen2_intr_ena, mfi_gen2_intr, mfi_gen2_post, mfi_scsi_ld_io, }; u_int32_t mfi_skinny_fw_state(struct mfi_softc *); void mfi_skinny_intr_dis(struct mfi_softc *); void mfi_skinny_intr_ena(struct mfi_softc *); int mfi_skinny_intr(struct mfi_softc *); void mfi_skinny_post(struct mfi_softc *, struct mfi_ccb *); static const struct mfi_iop_ops mfi_iop_skinny = { mfi_skinny_fw_state, mfi_skinny_intr_dis, mfi_skinny_intr_ena, mfi_skinny_intr, mfi_skinny_post, mfi_scsi_ld_io, }; static int mfi_tbolt_init_desc_pool(struct mfi_softc *); static int mfi_tbolt_init_MFI_queue(struct mfi_softc *); static void mfi_tbolt_build_mpt_ccb(struct mfi_ccb *); int mfi_tbolt_scsi_ld_io(struct mfi_ccb *, struct scsipi_xfer *, uint64_t, uint32_t); static void mfi_tbolt_scsi_ld_done(struct mfi_ccb *); static int mfi_tbolt_create_sgl(struct mfi_ccb *, int); void mfi_tbolt_sync_map_info(struct work *, void *); static void mfi_sync_map_complete(struct mfi_ccb *); u_int32_t mfi_tbolt_fw_state(struct mfi_softc *); void mfi_tbolt_intr_dis(struct mfi_softc *); void mfi_tbolt_intr_ena(struct mfi_softc *); int mfi_tbolt_intr(struct mfi_softc *sc); void mfi_tbolt_post(struct mfi_softc *, struct mfi_ccb *); static const struct mfi_iop_ops mfi_iop_tbolt = { mfi_tbolt_fw_state, mfi_tbolt_intr_dis, mfi_tbolt_intr_ena, mfi_tbolt_intr, mfi_tbolt_post, mfi_tbolt_scsi_ld_io, }; #define mfi_fw_state(_s) ((_s)->sc_iop->mio_fw_state(_s)) #define mfi_intr_enable(_s) ((_s)->sc_iop->mio_intr_ena(_s)) #define mfi_intr_disable(_s) ((_s)->sc_iop->mio_intr_dis(_s)) #define mfi_my_intr(_s) ((_s)->sc_iop->mio_intr(_s)) #define mfi_post(_s, _c) ((_s)->sc_iop->mio_post((_s), (_c))) static struct mfi_ccb * mfi_get_ccb(struct mfi_softc *sc) { struct mfi_ccb *ccb; int s; s = splbio(); ccb = TAILQ_FIRST(&sc->sc_ccb_freeq); if (ccb) { TAILQ_REMOVE(&sc->sc_ccb_freeq, ccb, ccb_link); ccb->ccb_state = MFI_CCB_READY; } splx(s); DNPRINTF(MFI_D_CCB, "%s: mfi_get_ccb: %p\n", DEVNAME(sc), ccb); if (__predict_false(ccb == NULL && sc->sc_running)) aprint_error_dev(sc->sc_dev, "out of ccb\n"); return ccb; } static void mfi_put_ccb(struct mfi_ccb *ccb) { struct mfi_softc *sc = ccb->ccb_sc; struct mfi_frame_header *hdr = &ccb->ccb_frame->mfr_header; int s; DNPRINTF(MFI_D_CCB, "%s: mfi_put_ccb: %p\n", DEVNAME(sc), ccb); hdr->mfh_cmd_status = 0x0; hdr->mfh_flags = 0x0; ccb->ccb_state = MFI_CCB_FREE; ccb->ccb_xs = NULL; ccb->ccb_flags = 0; ccb->ccb_done = NULL; ccb->ccb_direction = 0; ccb->ccb_frame_size = 0; ccb->ccb_extra_frames = 0; ccb->ccb_sgl = NULL; ccb->ccb_data = NULL; ccb->ccb_len = 0; if (sc->sc_ioptype == MFI_IOP_TBOLT) { /* erase tb_request_desc but preserve SMID */ int index = ccb->ccb_tb_request_desc.header.SMID; ccb->ccb_tb_request_desc.words = 0; ccb->ccb_tb_request_desc.header.SMID = index; } s = splbio(); TAILQ_INSERT_TAIL(&sc->sc_ccb_freeq, ccb, ccb_link); splx(s); } static int mfi_destroy_ccb(struct mfi_softc *sc) { struct mfi_ccb *ccb; uint32_t i; DNPRINTF(MFI_D_CCB, "%s: mfi_destroy_ccb\n", DEVNAME(sc)); for (i = 0; (ccb = mfi_get_ccb(sc)) != NULL; i++) { /* create a dma map for transfer */ bus_dmamap_destroy(sc->sc_datadmat, ccb->ccb_dmamap); } if (i < sc->sc_max_cmds) return EBUSY; free(sc->sc_ccb, M_DEVBUF); return 0; } static int mfi_init_ccb(struct mfi_softc *sc) { struct mfi_ccb *ccb; uint32_t i; int error; bus_addr_t io_req_base_phys; uint8_t *io_req_base; int offset; DNPRINTF(MFI_D_CCB, "%s: mfi_init_ccb\n", DEVNAME(sc)); sc->sc_ccb = malloc(sizeof(struct mfi_ccb) * sc->sc_max_cmds, M_DEVBUF, M_WAITOK|M_ZERO); if (sc->sc_ioptype == MFI_IOP_TBOLT) { /* * The first 256 bytes (SMID 0) is not used. * Don't add to the cmd list. */ io_req_base = (uint8_t *)MFIMEM_KVA(sc->sc_tbolt_reqmsgpool) + MEGASAS_THUNDERBOLT_NEW_MSG_SIZE; io_req_base_phys = MFIMEM_DVA(sc->sc_tbolt_reqmsgpool) + MEGASAS_THUNDERBOLT_NEW_MSG_SIZE; } else { io_req_base = NULL; /* XXX: gcc */ io_req_base_phys = 0; /* XXX: gcc */ } for (i = 0; i < sc->sc_max_cmds; i++) { ccb = &sc->sc_ccb[i]; ccb->ccb_sc = sc; /* select i'th frame */ ccb->ccb_frame = (union mfi_frame *) ((char*)MFIMEM_KVA(sc->sc_frames) + sc->sc_frames_size * i); ccb->ccb_pframe = MFIMEM_DVA(sc->sc_frames) + sc->sc_frames_size * i; ccb->ccb_frame->mfr_header.mfh_context = i; /* select i'th sense */ ccb->ccb_sense = (struct mfi_sense *) ((char*)MFIMEM_KVA(sc->sc_sense) + MFI_SENSE_SIZE * i); ccb->ccb_psense = (MFIMEM_DVA(sc->sc_sense) + MFI_SENSE_SIZE * i); /* create a dma map for transfer */ error = bus_dmamap_create(sc->sc_datadmat, MAXPHYS, sc->sc_max_sgl, MAXPHYS, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ccb->ccb_dmamap); if (error) { aprint_error_dev(sc->sc_dev, "cannot create ccb dmamap (%d)\n", error); goto destroy; } if (sc->sc_ioptype == MFI_IOP_TBOLT) { offset = MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * i; ccb->ccb_tb_io_request = (struct mfi_mpi2_request_raid_scsi_io *) (io_req_base + offset); ccb->ccb_tb_pio_request = io_req_base_phys + offset; offset = MEGASAS_MAX_SZ_CHAIN_FRAME * i; ccb->ccb_tb_sg_frame = (mpi2_sge_io_union *)(sc->sc_reply_pool_limit + offset); ccb->ccb_tb_psg_frame = sc->sc_sg_frame_busaddr + offset; /* SMID 0 is reserved. Set SMID/index from 1 */ ccb->ccb_tb_request_desc.header.SMID = i + 1; } DNPRINTF(MFI_D_CCB, "ccb(%d): %p frame: %p (%#lx) sense: %p (%#lx) map: %p\n", ccb->ccb_frame->mfr_header.mfh_context, ccb, ccb->ccb_frame, (u_long)ccb->ccb_pframe, ccb->ccb_sense, (u_long)ccb->ccb_psense, ccb->ccb_dmamap); /* add ccb to queue */ mfi_put_ccb(ccb); } return 0; destroy: /* free dma maps and ccb memory */ while (i) { i--; ccb = &sc->sc_ccb[i]; bus_dmamap_destroy(sc->sc_datadmat, ccb->ccb_dmamap); } free(sc->sc_ccb, M_DEVBUF); return 1; } static uint32_t mfi_read(struct mfi_softc *sc, bus_size_t r) { uint32_t rv; bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4, BUS_SPACE_BARRIER_READ); rv = bus_space_read_4(sc->sc_iot, sc->sc_ioh, r); DNPRINTF(MFI_D_RW, "%s: mr %#zx 0x08%x ", DEVNAME(sc), r, rv); return rv; } static void mfi_write(struct mfi_softc *sc, bus_size_t r, uint32_t v) { DNPRINTF(MFI_D_RW, "%s: mw %#zx 0x%08x", DEVNAME(sc), r, v); bus_space_write_4(sc->sc_iot, sc->sc_ioh, r, v); bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4, BUS_SPACE_BARRIER_WRITE); } static struct mfi_mem * mfi_allocmem(struct mfi_softc *sc, size_t size) { struct mfi_mem *mm; int nsegs; DNPRINTF(MFI_D_MEM, "%s: mfi_allocmem: %zu\n", DEVNAME(sc), size); mm = malloc(sizeof(struct mfi_mem), M_DEVBUF, M_NOWAIT|M_ZERO); if (mm == NULL) return NULL; mm->am_size = size; if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &mm->am_map) != 0) goto amfree; if (bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &mm->am_seg, 1, &nsegs, BUS_DMA_NOWAIT) != 0) goto destroy; if (bus_dmamem_map(sc->sc_dmat, &mm->am_seg, nsegs, size, &mm->am_kva, BUS_DMA_NOWAIT) != 0) goto free; if (bus_dmamap_load(sc->sc_dmat, mm->am_map, mm->am_kva, size, NULL, BUS_DMA_NOWAIT) != 0) goto unmap; DNPRINTF(MFI_D_MEM, " kva: %p dva: %p map: %p\n", mm->am_kva, (void *)mm->am_map->dm_segs[0].ds_addr, mm->am_map); memset(mm->am_kva, 0, size); return mm; unmap: bus_dmamem_unmap(sc->sc_dmat, mm->am_kva, size); free: bus_dmamem_free(sc->sc_dmat, &mm->am_seg, 1); destroy: bus_dmamap_destroy(sc->sc_dmat, mm->am_map); amfree: free(mm, M_DEVBUF); return NULL; } static void mfi_freemem(struct mfi_softc *sc, struct mfi_mem **mmp) { struct mfi_mem *mm = *mmp; if (mm == NULL) return; *mmp = NULL; DNPRINTF(MFI_D_MEM, "%s: mfi_freemem: %p\n", DEVNAME(sc), mm); bus_dmamap_unload(sc->sc_dmat, mm->am_map); bus_dmamem_unmap(sc->sc_dmat, mm->am_kva, mm->am_size); bus_dmamem_free(sc->sc_dmat, &mm->am_seg, 1); bus_dmamap_destroy(sc->sc_dmat, mm->am_map); free(mm, M_DEVBUF); } static int mfi_transition_firmware(struct mfi_softc *sc) { uint32_t fw_state, cur_state; int max_wait, i; fw_state = mfi_fw_state(sc) & MFI_STATE_MASK; DNPRINTF(MFI_D_CMD, "%s: mfi_transition_firmware: %#x\n", DEVNAME(sc), fw_state); while (fw_state != MFI_STATE_READY) { DNPRINTF(MFI_D_MISC, "%s: waiting for firmware to become ready\n", DEVNAME(sc)); cur_state = fw_state; switch (fw_state) { case MFI_STATE_FAULT: aprint_error_dev(sc->sc_dev, "firmware fault\n"); return 1; case MFI_STATE_WAIT_HANDSHAKE: if (sc->sc_ioptype == MFI_IOP_SKINNY || sc->sc_ioptype == MFI_IOP_TBOLT) mfi_write(sc, MFI_SKINNY_IDB, MFI_INIT_CLEAR_HANDSHAKE); else mfi_write(sc, MFI_IDB, MFI_INIT_CLEAR_HANDSHAKE); max_wait = 2; break; case MFI_STATE_OPERATIONAL: if (sc->sc_ioptype == MFI_IOP_SKINNY || sc->sc_ioptype == MFI_IOP_TBOLT) mfi_write(sc, MFI_SKINNY_IDB, MFI_RESET_FLAGS); else mfi_write(sc, MFI_IDB, MFI_INIT_READY); max_wait = 10; break; case MFI_STATE_UNDEFINED: case MFI_STATE_BB_INIT: max_wait = 2; break; case MFI_STATE_FW_INIT: case MFI_STATE_DEVICE_SCAN: case MFI_STATE_FLUSH_CACHE: max_wait = 20; break; case MFI_STATE_BOOT_MESSAGE_PENDING: if (sc->sc_ioptype == MFI_IOP_SKINNY || sc->sc_ioptype == MFI_IOP_TBOLT) { mfi_write(sc, MFI_SKINNY_IDB, MFI_INIT_HOTPLUG); } else { mfi_write(sc, MFI_IDB, MFI_INIT_HOTPLUG); } max_wait = 180; break; default: aprint_error_dev(sc->sc_dev, "unknown firmware state %d\n", fw_state); return 1; } for (i = 0; i < (max_wait * 10); i++) { fw_state = mfi_fw_state(sc) & MFI_STATE_MASK; if (fw_state == cur_state) DELAY(100000); else break; } if (fw_state == cur_state) { aprint_error_dev(sc->sc_dev, "firmware stuck in state %#x\n", fw_state); return 1; } } return 0; } static int mfi_initialize_firmware(struct mfi_softc *sc) { struct mfi_ccb *ccb; struct mfi_init_frame *init; struct mfi_init_qinfo *qinfo; DNPRINTF(MFI_D_MISC, "%s: mfi_initialize_firmware\n", DEVNAME(sc)); if ((ccb = mfi_get_ccb(sc)) == NULL) return 1; init = &ccb->ccb_frame->mfr_init; qinfo = (struct mfi_init_qinfo *)((uint8_t *)init + MFI_FRAME_SIZE); memset(qinfo, 0, sizeof *qinfo); qinfo->miq_rq_entries = sc->sc_max_cmds + 1; qinfo->miq_rq_addr_lo = htole32(MFIMEM_DVA(sc->sc_pcq) + offsetof(struct mfi_prod_cons, mpc_reply_q)); qinfo->miq_pi_addr_lo = htole32(MFIMEM_DVA(sc->sc_pcq) + offsetof(struct mfi_prod_cons, mpc_producer)); qinfo->miq_ci_addr_lo = htole32(MFIMEM_DVA(sc->sc_pcq) + offsetof(struct mfi_prod_cons, mpc_consumer)); init->mif_header.mfh_cmd = MFI_CMD_INIT; init->mif_header.mfh_data_len = sizeof *qinfo; init->mif_qinfo_new_addr_lo = htole32(ccb->ccb_pframe + MFI_FRAME_SIZE); DNPRINTF(MFI_D_MISC, "%s: entries: %#x rq: %#x pi: %#x ci: %#x\n", DEVNAME(sc), qinfo->miq_rq_entries, qinfo->miq_rq_addr_lo, qinfo->miq_pi_addr_lo, qinfo->miq_ci_addr_lo); if (mfi_poll(ccb)) { aprint_error_dev(sc->sc_dev, "mfi_initialize_firmware failed\n"); return 1; } mfi_put_ccb(ccb); return 0; } static int mfi_get_info(struct mfi_softc *sc) { #ifdef MFI_DEBUG int i; #endif DNPRINTF(MFI_D_MISC, "%s: mfi_get_info\n", DEVNAME(sc)); if (mfi_mgmt_internal(sc, MR_DCMD_CTRL_GET_INFO, MFI_DATA_IN, sizeof(sc->sc_info), &sc->sc_info, NULL, cold ? true : false)) return 1; #ifdef MFI_DEBUG for (i = 0; i < sc->sc_info.mci_image_component_count; i++) { printf("%s: active FW %s Version %s date %s time %s\n", DEVNAME(sc), sc->sc_info.mci_image_component[i].mic_name, sc->sc_info.mci_image_component[i].mic_version, sc->sc_info.mci_image_component[i].mic_build_date, sc->sc_info.mci_image_component[i].mic_build_time); } for (i = 0; i < sc->sc_info.mci_pending_image_component_count; i++) { printf("%s: pending FW %s Version %s date %s time %s\n", DEVNAME(sc), sc->sc_info.mci_pending_image_component[i].mic_name, sc->sc_info.mci_pending_image_component[i].mic_version, sc->sc_info.mci_pending_image_component[i].mic_build_date, sc->sc_info.mci_pending_image_component[i].mic_build_time); } printf("%s: max_arms %d max_spans %d max_arrs %d max_lds %d name %s\n", DEVNAME(sc), sc->sc_info.mci_max_arms, sc->sc_info.mci_max_spans, sc->sc_info.mci_max_arrays, sc->sc_info.mci_max_lds, sc->sc_info.mci_product_name); printf("%s: serial %s present %#x fw time %d max_cmds %d max_sg %d\n", DEVNAME(sc), sc->sc_info.mci_serial_number, sc->sc_info.mci_hw_present, sc->sc_info.mci_current_fw_time, sc->sc_info.mci_max_cmds, sc->sc_info.mci_max_sg_elements); printf("%s: max_rq %d lds_pres %d lds_deg %d lds_off %d pd_pres %d\n", DEVNAME(sc), sc->sc_info.mci_max_request_size, sc->sc_info.mci_lds_present, sc->sc_info.mci_lds_degraded, sc->sc_info.mci_lds_offline, sc->sc_info.mci_pd_present); printf("%s: pd_dsk_prs %d pd_dsk_pred_fail %d pd_dsk_fail %d\n", DEVNAME(sc), sc->sc_info.mci_pd_disks_present, sc->sc_info.mci_pd_disks_pred_failure, sc->sc_info.mci_pd_disks_failed); printf("%s: nvram %d mem %d flash %d\n", DEVNAME(sc), sc->sc_info.mci_nvram_size, sc->sc_info.mci_memory_size, sc->sc_info.mci_flash_size); printf("%s: ram_cor %d ram_uncor %d clus_all %d clus_act %d\n", DEVNAME(sc), sc->sc_info.mci_ram_correctable_errors, sc->sc_info.mci_ram_uncorrectable_errors, sc->sc_info.mci_cluster_allowed, sc->sc_info.mci_cluster_active); printf("%s: max_strps_io %d raid_lvl %#x adapt_ops %#x ld_ops %#x\n", DEVNAME(sc), sc->sc_info.mci_max_strips_per_io, sc->sc_info.mci_raid_levels, sc->sc_info.mci_adapter_ops, sc->sc_info.mci_ld_ops); printf("%s: strp_sz_min %d strp_sz_max %d pd_ops %#x pd_mix %#x\n", DEVNAME(sc), sc->sc_info.mci_stripe_sz_ops.min, sc->sc_info.mci_stripe_sz_ops.max, sc->sc_info.mci_pd_ops, sc->sc_info.mci_pd_mix_support); printf("%s: ecc_bucket %d pckg_prop %s\n", DEVNAME(sc), sc->sc_info.mci_ecc_bucket_count, sc->sc_info.mci_package_version); printf("%s: sq_nm %d prd_fail_poll %d intr_thrtl %d intr_thrtl_to %d\n", DEVNAME(sc), sc->sc_info.mci_properties.mcp_seq_num, sc->sc_info.mci_properties.mcp_pred_fail_poll_interval, sc->sc_info.mci_properties.mcp_intr_throttle_cnt, sc->sc_info.mci_properties.mcp_intr_throttle_timeout); printf("%s: rbld_rate %d patr_rd_rate %d bgi_rate %d cc_rate %d\n", DEVNAME(sc), sc->sc_info.mci_properties.mcp_rebuild_rate, sc->sc_info.mci_properties.mcp_patrol_read_rate, sc->sc_info.mci_properties.mcp_bgi_rate, sc->sc_info.mci_properties.mcp_cc_rate); printf("%s: rc_rate %d ch_flsh %d spin_cnt %d spin_dly %d clus_en %d\n", DEVNAME(sc), sc->sc_info.mci_properties.mcp_recon_rate, sc->sc_info.mci_properties.mcp_cache_flush_interval, sc->sc_info.mci_properties.mcp_spinup_drv_cnt, sc->sc_info.mci_properties.mcp_spinup_delay, sc->sc_info.mci_properties.mcp_cluster_enable); printf("%s: coerc %d alarm %d dis_auto_rbld %d dis_bat_wrn %d ecc %d\n", DEVNAME(sc), sc->sc_info.mci_properties.mcp_coercion_mode, sc->sc_info.mci_properties.mcp_alarm_enable, sc->sc_info.mci_properties.mcp_disable_auto_rebuild, sc->sc_info.mci_properties.mcp_disable_battery_warn, sc->sc_info.mci_properties.mcp_ecc_bucket_size); printf("%s: ecc_leak %d rest_hs %d exp_encl_dev %d\n", DEVNAME(sc), sc->sc_info.mci_properties.mcp_ecc_bucket_leak_rate, sc->sc_info.mci_properties.mcp_restore_hotspare_on_insertion, sc->sc_info.mci_properties.mcp_expose_encl_devices); printf("%s: vendor %#x device %#x subvendor %#x subdevice %#x\n", DEVNAME(sc), sc->sc_info.mci_pci.mip_vendor, sc->sc_info.mci_pci.mip_device, sc->sc_info.mci_pci.mip_subvendor, sc->sc_info.mci_pci.mip_subdevice); printf("%s: type %#x port_count %d port_addr ", DEVNAME(sc), sc->sc_info.mci_host.mih_type, sc->sc_info.mci_host.mih_port_count); for (i = 0; i < 8; i++) printf("%.0" PRIx64 " ", sc->sc_info.mci_host.mih_port_addr[i]); printf("\n"); printf("%s: type %.x port_count %d port_addr ", DEVNAME(sc), sc->sc_info.mci_device.mid_type, sc->sc_info.mci_device.mid_port_count); for (i = 0; i < 8; i++) { printf("%.0" PRIx64 " ", sc->sc_info.mci_device.mid_port_addr[i]); } printf("\n"); #endif /* MFI_DEBUG */ return 0; } static int mfi_get_bbu(struct mfi_softc *sc, struct mfi_bbu_status *stat) { DNPRINTF(MFI_D_MISC, "%s: mfi_get_bbu\n", DEVNAME(sc)); if (mfi_mgmt_internal(sc, MR_DCMD_BBU_GET_STATUS, MFI_DATA_IN, sizeof(*stat), stat, NULL, cold ? true : false)) return MFI_BBU_UNKNOWN; #ifdef MFI_DEBUG printf("bbu type %d, voltage %d, current %d, temperature %d, " "status 0x%x\n", stat->battery_type, stat->voltage, stat->current, stat->temperature, stat->fw_status); printf("details: "); switch (stat->battery_type) { case MFI_BBU_TYPE_IBBU: printf("guage %d relative charge %d charger state %d " "charger ctrl %d\n", stat->detail.ibbu.gas_guage_status, stat->detail.ibbu.relative_charge , stat->detail.ibbu.charger_system_state , stat->detail.ibbu.charger_system_ctrl); printf("\tcurrent %d abs charge %d max error %d\n", stat->detail.ibbu.charging_current , stat->detail.ibbu.absolute_charge , stat->detail.ibbu.max_error); break; case MFI_BBU_TYPE_BBU: printf("guage %d relative charge %d charger state %d\n", stat->detail.ibbu.gas_guage_status, stat->detail.bbu.relative_charge , stat->detail.bbu.charger_status ); printf("\trem capacity %d fyll capacity %d SOH %d\n", stat->detail.bbu.remaining_capacity , stat->detail.bbu.full_charge_capacity , stat->detail.bbu.is_SOH_good); break; default: printf("\n"); } #endif switch (stat->battery_type) { case MFI_BBU_TYPE_BBU: return (stat->detail.bbu.is_SOH_good ? MFI_BBU_GOOD : MFI_BBU_BAD); case MFI_BBU_TYPE_NONE: return MFI_BBU_UNKNOWN; default: if (stat->fw_status & (MFI_BBU_STATE_PACK_MISSING | MFI_BBU_STATE_VOLTAGE_LOW | MFI_BBU_STATE_TEMPERATURE_HIGH | MFI_BBU_STATE_LEARN_CYC_FAIL | MFI_BBU_STATE_LEARN_CYC_TIMEOUT | MFI_BBU_STATE_I2C_ERR_DETECT)) return MFI_BBU_BAD; return MFI_BBU_GOOD; } } static void mfiminphys(struct buf *bp) { DNPRINTF(MFI_D_MISC, "mfiminphys: %d\n", bp->b_bcount); /* XXX currently using MFI_MAXFER = MAXPHYS */ if (bp->b_bcount > MFI_MAXFER) bp->b_bcount = MFI_MAXFER; minphys(bp); } int mfi_rescan(device_t self, const char *ifattr, const int *locators) { struct mfi_softc *sc = device_private(self); if (sc->sc_child != NULL) return 0; sc->sc_child = config_found_sm_loc(self, ifattr, locators, &sc->sc_chan, scsiprint, NULL); return 0; } void mfi_childdetached(device_t self, device_t child) { struct mfi_softc *sc = device_private(self); KASSERT(self == sc->sc_dev); KASSERT(child == sc->sc_child); if (child == sc->sc_child) sc->sc_child = NULL; } int mfi_detach(struct mfi_softc *sc, int flags) { int error; DNPRINTF(MFI_D_MISC, "%s: mfi_detach\n", DEVNAME(sc)); if ((error = config_detach_children(sc->sc_dev, flags)) != 0) return error; #if NBIO > 0 mfi_destroy_sensors(sc); bio_unregister(sc->sc_dev); #endif /* NBIO > 0 */ mfi_intr_disable(sc); mfi_shutdown(sc->sc_dev, 0); if (sc->sc_ioptype == MFI_IOP_TBOLT) { workqueue_destroy(sc->sc_ldsync_wq); mfi_put_ccb(sc->sc_ldsync_ccb); mfi_freemem(sc, &sc->sc_tbolt_reqmsgpool); mfi_freemem(sc, &sc->sc_tbolt_ioc_init); mfi_freemem(sc, &sc->sc_tbolt_verbuf); } if ((error = mfi_destroy_ccb(sc)) != 0) return error; mfi_freemem(sc, &sc->sc_sense); mfi_freemem(sc, &sc->sc_frames); mfi_freemem(sc, &sc->sc_pcq); return 0; } static bool mfi_shutdown(device_t dev, int how) { struct mfi_softc *sc = device_private(dev); union mfi_mbox mbox; int s = splbio(); DNPRINTF(MFI_D_MISC, "%s: mfi_shutdown\n", DEVNAME(sc)); if (sc->sc_running) { memset(&mbox, 0, sizeof(mbox)); mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE; if (mfi_mgmt_internal(sc, MR_DCMD_CTRL_CACHE_FLUSH, MFI_DATA_NONE, 0, NULL, &mbox, true)) { aprint_error_dev(dev, "shutdown: cache flush failed\n"); goto fail; } mbox.b[0] = 0; if (mfi_mgmt_internal(sc, MR_DCMD_CTRL_SHUTDOWN, MFI_DATA_NONE, 0, NULL, &mbox, true)) { aprint_error_dev(dev, "shutdown: " "firmware shutdown failed\n"); goto fail; } sc->sc_running = false; } splx(s); return true; fail: splx(s); return false; } static bool mfi_suspend(device_t dev, const pmf_qual_t *q) { /* XXX to be implemented */ return false; } static bool mfi_resume(device_t dev, const pmf_qual_t *q) { /* XXX to be implemented */ return false; } int mfi_attach(struct mfi_softc *sc, enum mfi_iop iop) { struct scsipi_adapter *adapt = &sc->sc_adapt; struct scsipi_channel *chan = &sc->sc_chan; uint32_t status, frames, max_sgl; int i; DNPRINTF(MFI_D_MISC, "%s: mfi_attach\n", DEVNAME(sc)); sc->sc_ioptype = iop; switch (iop) { case MFI_IOP_XSCALE: sc->sc_iop = &mfi_iop_xscale; break; case MFI_IOP_PPC: sc->sc_iop = &mfi_iop_ppc; break; case MFI_IOP_GEN2: sc->sc_iop = &mfi_iop_gen2; break; case MFI_IOP_SKINNY: sc->sc_iop = &mfi_iop_skinny; break; case MFI_IOP_TBOLT: sc->sc_iop = &mfi_iop_tbolt; break; default: panic("%s: unknown iop %d", DEVNAME(sc), iop); } if (mfi_transition_firmware(sc)) return 1; TAILQ_INIT(&sc->sc_ccb_freeq); status = mfi_fw_state(sc); sc->sc_max_cmds = status & MFI_STATE_MAXCMD_MASK; max_sgl = (status & MFI_STATE_MAXSGL_MASK) >> 16; if (sc->sc_ioptype == MFI_IOP_TBOLT) { sc->sc_max_sgl = uimin(max_sgl, (128 * 1024) / PAGE_SIZE + 1); sc->sc_sgl_size = sizeof(struct mfi_sg_ieee); } else if (sc->sc_64bit_dma) { sc->sc_max_sgl = uimin(max_sgl, (128 * 1024) / PAGE_SIZE + 1); sc->sc_sgl_size = sizeof(struct mfi_sg64); } else { sc->sc_max_sgl = max_sgl; sc->sc_sgl_size = sizeof(struct mfi_sg32); } if (sc->sc_ioptype == MFI_IOP_SKINNY) sc->sc_sgl_size = sizeof(struct mfi_sg_ieee); DNPRINTF(MFI_D_MISC, "%s: max commands: %u, max sgl: %u\n", DEVNAME(sc), sc->sc_max_cmds, sc->sc_max_sgl); if (sc->sc_ioptype == MFI_IOP_TBOLT) { uint32_t tb_mem_size; /* for Alignment */ tb_mem_size = MEGASAS_THUNDERBOLT_MSG_ALIGNMENT; tb_mem_size += MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1); sc->sc_reply_pool_size = ((sc->sc_max_cmds + 1 + 15) / 16) * 16; tb_mem_size += MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size; /* this is for SGL's */ tb_mem_size += MEGASAS_MAX_SZ_CHAIN_FRAME * sc->sc_max_cmds; sc->sc_tbolt_reqmsgpool = mfi_allocmem(sc, tb_mem_size); if (sc->sc_tbolt_reqmsgpool == NULL) { aprint_error_dev(sc->sc_dev, "unable to allocate thunderbolt " "request message pool\n"); goto nopcq; } if (mfi_tbolt_init_desc_pool(sc)) { aprint_error_dev(sc->sc_dev, "Thunderbolt pool preparation error\n"); goto nopcq; } /* * Allocate DMA memory mapping for MPI2 IOC Init descriptor, * we are taking it diffrent from what we have allocated for * Request and reply descriptors to avoid confusion later */ sc->sc_tbolt_ioc_init = mfi_allocmem(sc, sizeof(struct mpi2_ioc_init_request)); if (sc->sc_tbolt_ioc_init == NULL) { aprint_error_dev(sc->sc_dev, "unable to allocate thunderbolt IOC init memory"); goto nopcq; } sc->sc_tbolt_verbuf = mfi_allocmem(sc, MEGASAS_MAX_NAME*sizeof(bus_addr_t)); if (sc->sc_tbolt_verbuf == NULL) { aprint_error_dev(sc->sc_dev, "unable to allocate thunderbolt version buffer\n"); goto nopcq; } } /* consumer/producer and reply queue memory */ sc->sc_pcq = mfi_allocmem(sc, (sizeof(uint32_t) * sc->sc_max_cmds) + sizeof(struct mfi_prod_cons)); if (sc->sc_pcq == NULL) { aprint_error_dev(sc->sc_dev, "unable to allocate reply queue memory\n"); goto nopcq; } bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_pcq), 0, sizeof(uint32_t) * sc->sc_max_cmds + sizeof(struct mfi_prod_cons), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* frame memory */ frames = (sc->sc_sgl_size * sc->sc_max_sgl + MFI_FRAME_SIZE - 1) / MFI_FRAME_SIZE + 1; sc->sc_frames_size = frames * MFI_FRAME_SIZE; sc->sc_frames = mfi_allocmem(sc, sc->sc_frames_size * sc->sc_max_cmds); if (sc->sc_frames == NULL) { aprint_error_dev(sc->sc_dev, "unable to allocate frame memory\n"); goto noframe; } /* XXX hack, fix this */ if (MFIMEM_DVA(sc->sc_frames) & 0x3f) { aprint_error_dev(sc->sc_dev, "improper frame alignment (%#llx) FIXME\n", (long long int)MFIMEM_DVA(sc->sc_frames)); goto noframe; } /* sense memory */ sc->sc_sense = mfi_allocmem(sc, sc->sc_max_cmds * MFI_SENSE_SIZE); if (sc->sc_sense == NULL) { aprint_error_dev(sc->sc_dev, "unable to allocate sense memory\n"); goto nosense; } /* now that we have all memory bits go initialize ccbs */ if (mfi_init_ccb(sc)) { aprint_error_dev(sc->sc_dev, "could not init ccb list\n"); goto noinit; } /* kickstart firmware with all addresses and pointers */ if (sc->sc_ioptype == MFI_IOP_TBOLT) { if (mfi_tbolt_init_MFI_queue(sc)) { aprint_error_dev(sc->sc_dev, "could not initialize firmware\n"); goto noinit; } } else { if (mfi_initialize_firmware(sc)) { aprint_error_dev(sc->sc_dev, "could not initialize firmware\n"); goto noinit; } } sc->sc_running = true; if (mfi_get_info(sc)) { aprint_error_dev(sc->sc_dev, "could not retrieve controller information\n"); goto noinit; } aprint_normal_dev(sc->sc_dev, "%s version %s\n", sc->sc_info.mci_product_name, sc->sc_info.mci_package_version); aprint_normal_dev(sc->sc_dev, "logical drives %d, %dMB RAM, ", sc->sc_info.mci_lds_present, sc->sc_info.mci_memory_size); sc->sc_bbuok = false; if (sc->sc_info.mci_hw_present & MFI_INFO_HW_BBU) { struct mfi_bbu_status bbu_stat; int mfi_bbu_status = mfi_get_bbu(sc, &bbu_stat); aprint_normal("BBU type "); switch (bbu_stat.battery_type) { case MFI_BBU_TYPE_BBU: aprint_normal("BBU"); break; case MFI_BBU_TYPE_IBBU: aprint_normal("IBBU"); break; default: aprint_normal("unknown type %d", bbu_stat.battery_type); } aprint_normal(", status "); switch (mfi_bbu_status) { case MFI_BBU_GOOD: aprint_normal("good\n"); sc->sc_bbuok = true; break; case MFI_BBU_BAD: aprint_normal("bad\n"); break; case MFI_BBU_UNKNOWN: aprint_normal("unknown\n"); break; default: panic("mfi_bbu_status"); } } else { aprint_normal("BBU not present\n"); } sc->sc_ld_cnt = sc->sc_info.mci_lds_present; sc->sc_max_ld = sc->sc_ld_cnt; for (i = 0; i < sc->sc_ld_cnt; i++) sc->sc_ld[i].ld_present = 1; memset(adapt, 0, sizeof(*adapt)); adapt->adapt_dev = sc->sc_dev; adapt->adapt_nchannels = 1; /* keep a few commands for management */ if (sc->sc_max_cmds > 4) adapt->adapt_openings = sc->sc_max_cmds - 4; else adapt->adapt_openings = sc->sc_max_cmds; adapt->adapt_max_periph = adapt->adapt_openings; adapt->adapt_request = mfi_scsipi_request; adapt->adapt_minphys = mfiminphys; memset(chan, 0, sizeof(*chan)); chan->chan_adapter = adapt; chan->chan_bustype = &scsi_sas_bustype; chan->chan_channel = 0; chan->chan_flags = 0; chan->chan_nluns = 8; chan->chan_ntargets = MFI_MAX_LD; chan->chan_id = MFI_MAX_LD; mfi_rescan(sc->sc_dev, "scsi", NULL); /* enable interrupts */ mfi_intr_enable(sc); #if NBIO > 0 if (bio_register(sc->sc_dev, mfi_ioctl) != 0) panic("%s: controller registration failed", DEVNAME(sc)); if (mfi_create_sensors(sc) != 0) aprint_error_dev(sc->sc_dev, "unable to create sensors\n"); #endif /* NBIO > 0 */ if (!pmf_device_register1(sc->sc_dev, mfi_suspend, mfi_resume, mfi_shutdown)) { aprint_error_dev(sc->sc_dev, "couldn't establish power handler\n"); } return 0; noinit: mfi_freemem(sc, &sc->sc_sense); nosense: mfi_freemem(sc, &sc->sc_frames); noframe: mfi_freemem(sc, &sc->sc_pcq); nopcq: if (sc->sc_ioptype == MFI_IOP_TBOLT) { if (sc->sc_tbolt_reqmsgpool) mfi_freemem(sc, &sc->sc_tbolt_reqmsgpool); if (sc->sc_tbolt_verbuf) mfi_freemem(sc, &sc->sc_tbolt_verbuf); } return 1; } static int mfi_poll(struct mfi_ccb *ccb) { struct mfi_softc *sc = ccb->ccb_sc; struct mfi_frame_header *hdr; int to = 0; int rv = 0; DNPRINTF(MFI_D_CMD, "%s: mfi_poll\n", DEVNAME(sc)); hdr = &ccb->ccb_frame->mfr_header; hdr->mfh_cmd_status = 0xff; if (!sc->sc_MFA_enabled) hdr->mfh_flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE; /* no callback, caller is supposed to do the cleanup */ ccb->ccb_done = NULL; mfi_post(sc, ccb); if (sc->sc_MFA_enabled) { /* * depending on the command type, result may be posted * to *hdr, or not. In addition it seems there's * no way to avoid posting the SMID to the reply queue. * So pool using the interrupt routine. */ while (ccb->ccb_state != MFI_CCB_DONE) { delay(1000); if (to++ > 5000) { /* XXX 5 seconds busywait sucks */ rv = 1; break; } mfi_tbolt_intrh(sc); } } else { bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames), ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames), sc->sc_frames_size, BUS_DMASYNC_POSTREAD); while (hdr->mfh_cmd_status == 0xff) { delay(1000); if (to++ > 5000) { /* XXX 5 seconds busywait sucks */ rv = 1; break; } bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames), ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames), sc->sc_frames_size, BUS_DMASYNC_POSTREAD); } } bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames), ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames), sc->sc_frames_size, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); if (ccb->ccb_data != NULL) { DNPRINTF(MFI_D_INTR, "%s: mfi_mgmt_done sync\n", DEVNAME(sc)); bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0, ccb->ccb_dmamap->dm_mapsize, (ccb->ccb_direction & MFI_DATA_IN) ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_datadmat, ccb->ccb_dmamap); } if (rv != 0) { aprint_error_dev(sc->sc_dev, "timeout on ccb %d\n", hdr->mfh_context); ccb->ccb_flags |= MFI_CCB_F_ERR; return 1; } return 0; } int mfi_intr(void *arg) { struct mfi_softc *sc = arg; struct mfi_prod_cons *pcq; struct mfi_ccb *ccb; uint32_t producer, consumer, ctx; int claimed = 0; if (!mfi_my_intr(sc)) return 0; pcq = MFIMEM_KVA(sc->sc_pcq); DNPRINTF(MFI_D_INTR, "%s: mfi_intr %p %p\n", DEVNAME(sc), sc, pcq); bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_pcq), 0, sizeof(uint32_t) * sc->sc_max_cmds + sizeof(struct mfi_prod_cons), BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); producer = pcq->mpc_producer; consumer = pcq->mpc_consumer; while (consumer != producer) { DNPRINTF(MFI_D_INTR, "%s: mfi_intr pi %#x ci %#x\n", DEVNAME(sc), producer, consumer); ctx = pcq->mpc_reply_q[consumer]; pcq->mpc_reply_q[consumer] = MFI_INVALID_CTX; if (ctx == MFI_INVALID_CTX) aprint_error_dev(sc->sc_dev, "invalid context, p: %d c: %d\n", producer, consumer); else { /* XXX remove from queue and call scsi_done */ ccb = &sc->sc_ccb[ctx]; DNPRINTF(MFI_D_INTR, "%s: mfi_intr context %#x\n", DEVNAME(sc), ctx); bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames), ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames), sc->sc_frames_size, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); ccb->ccb_done(ccb); claimed = 1; } consumer++; if (consumer == (sc->sc_max_cmds + 1)) consumer = 0; } pcq->mpc_consumer = consumer; bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_pcq), 0, sizeof(uint32_t) * sc->sc_max_cmds + sizeof(struct mfi_prod_cons), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return claimed; } static int mfi_scsi_ld_io(struct mfi_ccb *ccb, struct scsipi_xfer *xs, uint64_t blockno, uint32_t blockcnt) { struct scsipi_periph *periph = xs->xs_periph; struct mfi_io_frame *io; DNPRINTF(MFI_D_CMD, "%s: mfi_scsi_ld_io: %d\n", device_xname(periph->periph_channel->chan_adapter->adapt_dev), periph->periph_target); if (!xs->data) return 1; io = &ccb->ccb_frame->mfr_io; if (xs->xs_control & XS_CTL_DATA_IN) { io->mif_header.mfh_cmd = MFI_CMD_LD_READ; ccb->ccb_direction = MFI_DATA_IN; } else { io->mif_header.mfh_cmd = MFI_CMD_LD_WRITE; ccb->ccb_direction = MFI_DATA_OUT; } io->mif_header.mfh_target_id = periph->periph_target; io->mif_header.mfh_timeout = 0; io->mif_header.mfh_flags = 0; io->mif_header.mfh_sense_len = MFI_SENSE_SIZE; io->mif_header.mfh_data_len= blockcnt; io->mif_lba_hi = (blockno >> 32); io->mif_lba_lo = (blockno & 0xffffffff); io->mif_sense_addr_lo = htole32(ccb->ccb_psense); io->mif_sense_addr_hi = 0; ccb->ccb_done = mfi_scsi_ld_done; ccb->ccb_xs = xs; ccb->ccb_frame_size = MFI_IO_FRAME_SIZE; ccb->ccb_sgl = &io->mif_sgl; ccb->ccb_data = xs->data; ccb->ccb_len = xs->datalen; if (mfi_create_sgl(ccb, (xs->xs_control & XS_CTL_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK)) return 1; return 0; } static void mfi_scsi_ld_done(struct mfi_ccb *ccb) { struct mfi_frame_header *hdr = &ccb->ccb_frame->mfr_header; mfi_scsi_xs_done(ccb, hdr->mfh_cmd_status, hdr->mfh_scsi_status); } static void mfi_scsi_xs_done(struct mfi_ccb *ccb, int status, int scsi_status) { struct scsipi_xfer *xs = ccb->ccb_xs; struct mfi_softc *sc = ccb->ccb_sc; DNPRINTF(MFI_D_INTR, "%s: mfi_scsi_xs_done %p %p\n", DEVNAME(sc), ccb, ccb->ccb_frame); if (xs->data != NULL) { DNPRINTF(MFI_D_INTR, "%s: mfi_scsi_xs_done sync\n", DEVNAME(sc)); bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0, ccb->ccb_dmamap->dm_mapsize, (xs->xs_control & XS_CTL_DATA_IN) ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_datadmat, ccb->ccb_dmamap); } if (status != MFI_STAT_OK) { xs->error = XS_DRIVER_STUFFUP; DNPRINTF(MFI_D_INTR, "%s: mfi_scsi_xs_done stuffup %#x\n", DEVNAME(sc), status); if (scsi_status != 0) { bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_sense), ccb->ccb_psense - MFIMEM_DVA(sc->sc_sense), MFI_SENSE_SIZE, BUS_DMASYNC_POSTREAD); DNPRINTF(MFI_D_INTR, "%s: mfi_scsi_xs_done sense %#x %p %p\n", DEVNAME(sc), scsi_status, &xs->sense, ccb->ccb_sense); memset(&xs->sense, 0, sizeof(xs->sense)); memcpy(&xs->sense, ccb->ccb_sense, sizeof(struct scsi_sense_data)); xs->error = XS_SENSE; } } else { xs->error = XS_NOERROR; xs->status = SCSI_OK; xs->resid = 0; } mfi_put_ccb(ccb); scsipi_done(xs); } static int mfi_scsi_ld(struct mfi_ccb *ccb, struct scsipi_xfer *xs) { struct mfi_pass_frame *pf; struct scsipi_periph *periph = xs->xs_periph; DNPRINTF(MFI_D_CMD, "%s: mfi_scsi_ld: %d\n", device_xname(periph->periph_channel->chan_adapter->adapt_dev), periph->periph_target); pf = &ccb->ccb_frame->mfr_pass; pf->mpf_header.mfh_cmd = MFI_CMD_LD_SCSI_IO; pf->mpf_header.mfh_target_id = periph->periph_target; pf->mpf_header.mfh_lun_id = 0; pf->mpf_header.mfh_cdb_len = xs->cmdlen; pf->mpf_header.mfh_timeout = 0; pf->mpf_header.mfh_data_len= xs->datalen; /* XXX */ pf->mpf_header.mfh_sense_len = MFI_SENSE_SIZE; pf->mpf_sense_addr_hi = 0; pf->mpf_sense_addr_lo = htole32(ccb->ccb_psense); memset(pf->mpf_cdb, 0, 16); memcpy(pf->mpf_cdb, &xs->cmdstore, xs->cmdlen); ccb->ccb_done = mfi_scsi_ld_done; ccb->ccb_xs = xs; ccb->ccb_frame_size = MFI_PASS_FRAME_SIZE; ccb->ccb_sgl = &pf->mpf_sgl; if (xs->xs_control & (XS_CTL_DATA_IN | XS_CTL_DATA_OUT)) ccb->ccb_direction = (xs->xs_control & XS_CTL_DATA_IN) ? MFI_DATA_IN : MFI_DATA_OUT; else ccb->ccb_direction = MFI_DATA_NONE; if (xs->data) { ccb->ccb_data = xs->data; ccb->ccb_len = xs->datalen; if (mfi_create_sgl(ccb, (xs->xs_control & XS_CTL_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK)) return 1; } return 0; } static void mfi_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req, void *arg) { struct scsipi_periph *periph; struct scsipi_xfer *xs; struct scsipi_adapter *adapt = chan->chan_adapter; struct mfi_softc *sc = device_private(adapt->adapt_dev); struct mfi_ccb *ccb; struct scsi_rw_6 *rw; struct scsipi_rw_10 *rwb; struct scsipi_rw_12 *rw12; struct scsipi_rw_16 *rw16; union mfi_mbox mbox; uint64_t blockno; uint32_t blockcnt; uint8_t target; int s; switch (req) { case ADAPTER_REQ_GROW_RESOURCES: /* Not supported. */ return; case ADAPTER_REQ_SET_XFER_MODE: { struct scsipi_xfer_mode *xm = arg; xm->xm_mode = PERIPH_CAP_TQING; xm->xm_period = 0; xm->xm_offset = 0; scsipi_async_event(&sc->sc_chan, ASYNC_EVENT_XFER_MODE, xm); return; } case ADAPTER_REQ_RUN_XFER: break; } xs = arg; periph = xs->xs_periph; target = periph->periph_target; DNPRINTF(MFI_D_CMD, "%s: mfi_scsipi_request req %d opcode: %#x " "target %d lun %d\n", DEVNAME(sc), req, xs->cmd->opcode, periph->periph_target, periph->periph_lun); s = splbio(); if (target >= MFI_MAX_LD || !sc->sc_ld[target].ld_present || periph->periph_lun != 0) { DNPRINTF(MFI_D_CMD, "%s: invalid target %d\n", DEVNAME(sc), target); xs->error = XS_SELTIMEOUT; scsipi_done(xs); splx(s); return; } if ((xs->cmd->opcode == SCSI_SYNCHRONIZE_CACHE_10 || xs->cmd->opcode == SCSI_SYNCHRONIZE_CACHE_16) && sc->sc_bbuok) { /* the cache is stable storage, don't flush */ xs->error = XS_NOERROR; xs->status = SCSI_OK; xs->resid = 0; scsipi_done(xs); splx(s); return; } if ((ccb = mfi_get_ccb(sc)) == NULL) { DNPRINTF(MFI_D_CMD, "%s: mfi_scsipi_request no ccb\n", DEVNAME(sc)); xs->error = XS_RESOURCE_SHORTAGE; scsipi_done(xs); splx(s); return; } switch (xs->cmd->opcode) { /* IO path */ case READ_16: case WRITE_16: rw16 = (struct scsipi_rw_16 *)xs->cmd; blockno = _8btol(rw16->addr); blockcnt = _4btol(rw16->length); if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) { goto stuffup; } break; case READ_12: case WRITE_12: rw12 = (struct scsipi_rw_12 *)xs->cmd; blockno = _4btol(rw12->addr); blockcnt = _4btol(rw12->length); if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) { goto stuffup; } break; case READ_10: case WRITE_10: rwb = (struct scsipi_rw_10 *)xs->cmd; blockno = _4btol(rwb->addr); blockcnt = _2btol(rwb->length); if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) { goto stuffup; } break; case SCSI_READ_6_COMMAND: case SCSI_WRITE_6_COMMAND: rw = (struct scsi_rw_6 *)xs->cmd; blockno = _3btol(rw->addr) & (SRW_TOPADDR << 16 | 0xffff); blockcnt = rw->length ? rw->length : 0x100; if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) { goto stuffup; } break; case SCSI_SYNCHRONIZE_CACHE_10: case SCSI_SYNCHRONIZE_CACHE_16: memset(&mbox, 0, sizeof(mbox)); mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE; if (mfi_mgmt(ccb, xs, MR_DCMD_CTRL_CACHE_FLUSH, MFI_DATA_NONE, 0, NULL, &mbox)) { goto stuffup; } break; /* hand it of to the firmware and let it deal with it */ case SCSI_TEST_UNIT_READY: /* save off sd? after autoconf */ if (!cold) /* XXX bogus */ strlcpy(sc->sc_ld[target].ld_dev, device_xname(sc->sc_dev), sizeof(sc->sc_ld[target].ld_dev)); /* FALLTHROUGH */ default: if (mfi_scsi_ld(ccb, xs)) { goto stuffup; } break; } DNPRINTF(MFI_D_CMD, "%s: start io %d\n", DEVNAME(sc), target); if (xs->xs_control & XS_CTL_POLL) { if (mfi_poll(ccb)) { /* XXX check for sense in ccb->ccb_sense? */ aprint_error_dev(sc->sc_dev, "mfi_scsipi_request poll failed\n"); memset(&xs->sense, 0, sizeof(xs->sense)); xs->sense.scsi_sense.response_code = SSD_RCODE_VALID | SSD_RCODE_CURRENT; xs->sense.scsi_sense.flags = SKEY_ILLEGAL_REQUEST; xs->sense.scsi_sense.asc = 0x20; /* invalid opcode */ xs->error = XS_SENSE; xs->status = SCSI_CHECK; } else { DNPRINTF(MFI_D_DMA, "%s: mfi_scsipi_request poll complete %d\n", DEVNAME(sc), ccb->ccb_dmamap->dm_nsegs); xs->error = XS_NOERROR; xs->status = SCSI_OK; xs->resid = 0; } mfi_put_ccb(ccb); scsipi_done(xs); splx(s); return; } mfi_post(sc, ccb); DNPRINTF(MFI_D_DMA, "%s: mfi_scsipi_request queued %d\n", DEVNAME(sc), ccb->ccb_dmamap->dm_nsegs); splx(s); return; stuffup: mfi_put_ccb(ccb); xs->error = XS_DRIVER_STUFFUP; scsipi_done(xs); splx(s); } static int mfi_create_sgl(struct mfi_ccb *ccb, int flags) { struct mfi_softc *sc = ccb->ccb_sc; struct mfi_frame_header *hdr; bus_dma_segment_t *sgd; union mfi_sgl *sgl; int error, i; DNPRINTF(MFI_D_DMA, "%s: mfi_create_sgl %p\n", DEVNAME(sc), ccb->ccb_data); if (!ccb->ccb_data) return 1; KASSERT(flags == BUS_DMA_NOWAIT || !cpu_intr_p()); error = bus_dmamap_load(sc->sc_datadmat, ccb->ccb_dmamap, ccb->ccb_data, ccb->ccb_len, NULL, flags); if (error) { if (error == EFBIG) { aprint_error_dev(sc->sc_dev, "more than %d dma segs\n", sc->sc_max_sgl); } else { aprint_error_dev(sc->sc_dev, "error %d loading dma map\n", error); } return 1; } hdr = &ccb->ccb_frame->mfr_header; sgl = ccb->ccb_sgl; sgd = ccb->ccb_dmamap->dm_segs; for (i = 0; i < ccb->ccb_dmamap->dm_nsegs; i++) { if (((sc->sc_ioptype == MFI_IOP_SKINNY) || (sc->sc_ioptype == MFI_IOP_TBOLT)) && (hdr->mfh_cmd == MFI_CMD_PD_SCSI_IO || hdr->mfh_cmd == MFI_CMD_LD_READ || hdr->mfh_cmd == MFI_CMD_LD_WRITE)) { sgl->sg_ieee[i].addr = htole64(sgd[i].ds_addr); sgl->sg_ieee[i].len = htole32(sgd[i].ds_len); sgl->sg_ieee[i].flags = 0; DNPRINTF(MFI_D_DMA, "%s: addr: %#" PRIx64 " len: %#" PRIx32 "\n", DEVNAME(sc), sgl->sg64[i].addr, sgl->sg64[i].len); hdr->mfh_flags |= MFI_FRAME_IEEE_SGL | MFI_FRAME_SGL64; } else if (sc->sc_64bit_dma) { sgl->sg64[i].addr = htole64(sgd[i].ds_addr); sgl->sg64[i].len = htole32(sgd[i].ds_len); DNPRINTF(MFI_D_DMA, "%s: addr: %#" PRIx64 " len: %#" PRIx32 "\n", DEVNAME(sc), sgl->sg64[i].addr, sgl->sg64[i].len); hdr->mfh_flags |= MFI_FRAME_SGL64; } else { sgl->sg32[i].addr = htole32(sgd[i].ds_addr); sgl->sg32[i].len = htole32(sgd[i].ds_len); DNPRINTF(MFI_D_DMA, "%s: addr: %#x len: %#x\n", DEVNAME(sc), sgl->sg32[i].addr, sgl->sg32[i].len); hdr->mfh_flags |= MFI_FRAME_SGL32; } } if (ccb->ccb_direction == MFI_DATA_IN) { hdr->mfh_flags |= MFI_FRAME_DIR_READ; bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0, ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); } else { hdr->mfh_flags |= MFI_FRAME_DIR_WRITE; bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0, ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); } hdr->mfh_sg_count = ccb->ccb_dmamap->dm_nsegs; ccb->ccb_frame_size += sc->sc_sgl_size * ccb->ccb_dmamap->dm_nsegs; ccb->ccb_extra_frames = (ccb->ccb_frame_size - 1) / MFI_FRAME_SIZE; DNPRINTF(MFI_D_DMA, "%s: sg_count: %d frame_size: %d frames_size: %d" " dm_nsegs: %d extra_frames: %d\n", DEVNAME(sc), hdr->mfh_sg_count, ccb->ccb_frame_size, sc->sc_frames_size, ccb->ccb_dmamap->dm_nsegs, ccb->ccb_extra_frames); return 0; } static int mfi_mgmt_internal(struct mfi_softc *sc, uint32_t opc, uint32_t dir, uint32_t len, void *buf, const union mfi_mbox *mbox, bool poll) { struct mfi_ccb *ccb; int rv = 1; if ((ccb = mfi_get_ccb(sc)) == NULL) return rv; rv = mfi_mgmt(ccb, NULL, opc, dir, len, buf, mbox); if (rv) return rv; if (poll) { rv = 1; if (mfi_poll(ccb)) goto done; } else { mfi_post(sc, ccb); DNPRINTF(MFI_D_MISC, "%s: mfi_mgmt_internal sleeping\n", DEVNAME(sc)); while (ccb->ccb_state != MFI_CCB_DONE) tsleep(ccb, PRIBIO, "mfi_mgmt", 0); if (ccb->ccb_flags & MFI_CCB_F_ERR) goto done; } rv = 0; done: mfi_put_ccb(ccb); return rv; } static int mfi_mgmt(struct mfi_ccb *ccb, struct scsipi_xfer *xs, uint32_t opc, uint32_t dir, uint32_t len, void *buf, const union mfi_mbox *mbox) { struct mfi_dcmd_frame *dcmd; DNPRINTF(MFI_D_MISC, "%s: mfi_mgmt %#x\n", DEVNAME(ccb->ccb_sc), opc); dcmd = &ccb->ccb_frame->mfr_dcmd; memset(dcmd->mdf_mbox.b, 0, MFI_MBOX_SIZE); dcmd->mdf_header.mfh_cmd = MFI_CMD_DCMD; dcmd->mdf_header.mfh_timeout = 0; dcmd->mdf_opcode = opc; dcmd->mdf_header.mfh_data_len = 0; ccb->ccb_direction = dir; ccb->ccb_xs = xs; ccb->ccb_done = mfi_mgmt_done; ccb->ccb_frame_size = MFI_DCMD_FRAME_SIZE; /* handle special opcodes */ if (mbox) memcpy(dcmd->mdf_mbox.b, mbox, MFI_MBOX_SIZE); if (dir != MFI_DATA_NONE) { dcmd->mdf_header.mfh_data_len = len; ccb->ccb_data = buf; ccb->ccb_len = len; ccb->ccb_sgl = &dcmd->mdf_sgl; if (mfi_create_sgl(ccb, BUS_DMA_WAITOK)) return 1; } return 0; } static void mfi_mgmt_done(struct mfi_ccb *ccb) { struct scsipi_xfer *xs = ccb->ccb_xs; struct mfi_softc *sc = ccb->ccb_sc; struct mfi_frame_header *hdr = &ccb->ccb_frame->mfr_header; DNPRINTF(MFI_D_INTR, "%s: mfi_mgmt_done %#lx %#lx\n", DEVNAME(sc), (u_long)ccb, (u_long)ccb->ccb_frame); if (ccb->ccb_data != NULL) { DNPRINTF(MFI_D_INTR, "%s: mfi_mgmt_done sync\n", DEVNAME(sc)); bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0, ccb->ccb_dmamap->dm_mapsize, (ccb->ccb_direction & MFI_DATA_IN) ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_datadmat, ccb->ccb_dmamap); } if (hdr->mfh_cmd_status != MFI_STAT_OK) ccb->ccb_flags |= MFI_CCB_F_ERR; ccb->ccb_state = MFI_CCB_DONE; if (xs) { if (hdr->mfh_cmd_status != MFI_STAT_OK) { xs->error = XS_DRIVER_STUFFUP; } else { xs->error = XS_NOERROR; xs->status = SCSI_OK; xs->resid = 0; } mfi_put_ccb(ccb); scsipi_done(xs); } else wakeup(ccb); } #if NBIO > 0 int mfi_ioctl(device_t dev, u_long cmd, void *addr) { struct mfi_softc *sc = device_private(dev); int error = 0; int s; KERNEL_LOCK(1, curlwp); s = splbio(); DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl ", DEVNAME(sc)); switch (cmd) { case BIOCINQ: DNPRINTF(MFI_D_IOCTL, "inq\n"); error = mfi_ioctl_inq(sc, (struct bioc_inq *)addr); break; case BIOCVOL: DNPRINTF(MFI_D_IOCTL, "vol\n"); error = mfi_ioctl_vol(sc, (struct bioc_vol *)addr); break; case BIOCDISK: DNPRINTF(MFI_D_IOCTL, "disk\n"); error = mfi_ioctl_disk(sc, (struct bioc_disk *)addr); break; case BIOCALARM: DNPRINTF(MFI_D_IOCTL, "alarm\n"); error = mfi_ioctl_alarm(sc, (struct bioc_alarm *)addr); break; case BIOCBLINK: DNPRINTF(MFI_D_IOCTL, "blink\n"); error = mfi_ioctl_blink(sc, (struct bioc_blink *)addr); break; case BIOCSETSTATE: DNPRINTF(MFI_D_IOCTL, "setstate\n"); error = mfi_ioctl_setstate(sc, (struct bioc_setstate *)addr); break; default: DNPRINTF(MFI_D_IOCTL, " invalid ioctl\n"); error = EINVAL; } splx(s); KERNEL_UNLOCK_ONE(curlwp); DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl return %x\n", DEVNAME(sc), error); return error; } static int mfi_ioctl_inq(struct mfi_softc *sc, struct bioc_inq *bi) { struct mfi_conf *cfg; int rv = EINVAL; DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_inq\n", DEVNAME(sc)); if (mfi_get_info(sc)) { DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_inq failed\n", DEVNAME(sc)); return EIO; } /* get figures */ cfg = malloc(sizeof *cfg, M_DEVBUF, M_WAITOK); if (mfi_mgmt_internal(sc, MR_DCMD_CONF_GET, MFI_DATA_IN, sizeof *cfg, cfg, NULL, false)) goto freeme; strlcpy(bi->bi_dev, DEVNAME(sc), sizeof(bi->bi_dev)); bi->bi_novol = cfg->mfc_no_ld + cfg->mfc_no_hs; bi->bi_nodisk = sc->sc_info.mci_pd_disks_present; rv = 0; freeme: free(cfg, M_DEVBUF); return rv; } static int mfi_ioctl_vol(struct mfi_softc *sc, struct bioc_vol *bv) { int i, per, rv = EINVAL; union mfi_mbox mbox; DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_vol %#x\n", DEVNAME(sc), bv->bv_volid); if (mfi_mgmt_internal(sc, MR_DCMD_LD_GET_LIST, MFI_DATA_IN, sizeof(sc->sc_ld_list), &sc->sc_ld_list, NULL, false)) goto done; i = bv->bv_volid; memset(&mbox, 0, sizeof(mbox)); mbox.b[0] = sc->sc_ld_list.mll_list[i].mll_ld.mld_target; DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_vol target %#x\n", DEVNAME(sc), mbox.b[0]); if (mfi_mgmt_internal(sc, MR_DCMD_LD_GET_INFO, MFI_DATA_IN, sizeof(sc->sc_ld_details), &sc->sc_ld_details, &mbox, false)) goto done; if (bv->bv_volid >= sc->sc_ld_list.mll_no_ld) { /* go do hotspares */ rv = mfi_bio_hs(sc, bv->bv_volid, MFI_MGMT_VD, bv); goto done; } strlcpy(bv->bv_dev, sc->sc_ld[i].ld_dev, sizeof(bv->bv_dev)); switch (sc->sc_ld_list.mll_list[i].mll_state) { case MFI_LD_OFFLINE: bv->bv_status = BIOC_SVOFFLINE; break; case MFI_LD_PART_DEGRADED: case MFI_LD_DEGRADED: bv->bv_status = BIOC_SVDEGRADED; break; case MFI_LD_ONLINE: bv->bv_status = BIOC_SVONLINE; break; default: bv->bv_status = BIOC_SVINVALID; DNPRINTF(MFI_D_IOCTL, "%s: invalid logical disk state %#x\n", DEVNAME(sc), sc->sc_ld_list.mll_list[i].mll_state); } /* additional status can modify MFI status */ switch (sc->sc_ld_details.mld_progress.mlp_in_prog) { case MFI_LD_PROG_CC: bv->bv_status = BIOC_SVSCRUB; per = (int)sc->sc_ld_details.mld_progress.mlp_cc.mp_progress; bv->bv_percent = (per * 100) / 0xffff; bv->bv_seconds = sc->sc_ld_details.mld_progress.mlp_cc.mp_elapsed_seconds; break; case MFI_LD_PROG_BGI: bv->bv_status = BIOC_SVSCRUB; per = (int)sc->sc_ld_details.mld_progress.mlp_bgi.mp_progress; bv->bv_percent = (per * 100) / 0xffff; bv->bv_seconds = sc->sc_ld_details.mld_progress.mlp_bgi.mp_elapsed_seconds; break; case MFI_LD_PROG_FGI: case MFI_LD_PROG_RECONSTRUCT: /* nothing yet */ break; } /* * The RAID levels are determined per the SNIA DDF spec, this is only * a subset that is valid for the MFI controller. */ bv->bv_level = sc->sc_ld_details.mld_cfg.mlc_parm.mpa_pri_raid; if (sc->sc_ld_details.mld_cfg.mlc_parm.mpa_sec_raid == MFI_DDF_SRL_SPANNED) bv->bv_level *= 10; bv->bv_nodisk = sc->sc_ld_details.mld_cfg.mlc_parm.mpa_no_drv_per_span * sc->sc_ld_details.mld_cfg.mlc_parm.mpa_span_depth; bv->bv_size = sc->sc_ld_details.mld_size * 512; /* bytes per block */ bv->bv_stripe_size = (512 << sc->sc_ld_details.mld_cfg.mlc_parm.mpa_stripe_size) / 1024; /* in KB */ rv = 0; done: DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_vol done %x\n", DEVNAME(sc), rv); return rv; } static int mfi_ioctl_disk(struct mfi_softc *sc, struct bioc_disk *bd) { struct mfi_conf *cfg; struct mfi_array *ar; struct mfi_ld_cfg *ld; struct mfi_pd_details *pd; struct scsipi_inquiry_data *inqbuf; char vend[8+16+4+1]; int i, rv = EINVAL; int arr, vol, disk; uint32_t size; union mfi_mbox mbox; DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_disk %#x\n", DEVNAME(sc), bd->bd_diskid); pd = malloc(sizeof *pd, M_DEVBUF, M_WAITOK | M_ZERO); /* send single element command to retrieve size for full structure */ cfg = malloc(sizeof *cfg, M_DEVBUF, M_WAITOK); if (mfi_mgmt_internal(sc, MR_DCMD_CONF_GET, MFI_DATA_IN, sizeof *cfg, cfg, NULL, false)) goto freeme; size = cfg->mfc_size; free(cfg, M_DEVBUF); /* memory for read config */ cfg = malloc(size, M_DEVBUF, M_WAITOK|M_ZERO); if (mfi_mgmt_internal(sc, MR_DCMD_CONF_GET, MFI_DATA_IN, size, cfg, NULL, false)) goto freeme; ar = cfg->mfc_array; /* calculate offset to ld structure */ ld = (struct mfi_ld_cfg *)( ((uint8_t *)cfg) + offsetof(struct mfi_conf, mfc_array) + cfg->mfc_array_size * cfg->mfc_no_array); vol = bd->bd_volid; if (vol >= cfg->mfc_no_ld) { /* do hotspares */ rv = mfi_bio_hs(sc, bd->bd_volid, MFI_MGMT_SD, bd); goto freeme; } /* find corresponding array for ld */ for (i = 0, arr = 0; i < vol; i++) arr += ld[i].mlc_parm.mpa_span_depth; /* offset disk into pd list */ disk = bd->bd_diskid % ld[vol].mlc_parm.mpa_no_drv_per_span; /* offset array index into the next spans */ arr += bd->bd_diskid / ld[vol].mlc_parm.mpa_no_drv_per_span; bd->bd_target = ar[arr].pd[disk].mar_enc_slot; switch (ar[arr].pd[disk].mar_pd_state){ case MFI_PD_UNCONFIG_GOOD: bd->bd_status = BIOC_SDUNUSED; break; case MFI_PD_HOTSPARE: /* XXX dedicated hotspare part of array? */ bd->bd_status = BIOC_SDHOTSPARE; break; case MFI_PD_OFFLINE: bd->bd_status = BIOC_SDOFFLINE; break; case MFI_PD_FAILED: bd->bd_status = BIOC_SDFAILED; break; case MFI_PD_REBUILD: bd->bd_status = BIOC_SDREBUILD; break; case MFI_PD_ONLINE: bd->bd_status = BIOC_SDONLINE; break; case MFI_PD_UNCONFIG_BAD: /* XXX define new state in bio */ default: bd->bd_status = BIOC_SDINVALID; break; } /* get the remaining fields */ memset(&mbox, 0, sizeof(mbox)); mbox.s[0] = ar[arr].pd[disk].mar_pd.mfp_id; memset(pd, 0, sizeof(*pd)); if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_INFO, MFI_DATA_IN, sizeof *pd, pd, &mbox, false)) goto freeme; bd->bd_size = pd->mpd_size * 512; /* bytes per block */ /* if pd->mpd_enc_idx is 0 then it is not in an enclosure */ bd->bd_channel = pd->mpd_enc_idx; inqbuf = (struct scsipi_inquiry_data *)&pd->mpd_inq_data; memcpy(vend, inqbuf->vendor, sizeof vend - 1); vend[sizeof vend - 1] = '\0'; strlcpy(bd->bd_vendor, vend, sizeof(bd->bd_vendor)); /* XXX find a way to retrieve serial nr from drive */ /* XXX find a way to get bd_procdev */ rv = 0; freeme: free(pd, M_DEVBUF); free(cfg, M_DEVBUF); return rv; } static int mfi_ioctl_alarm(struct mfi_softc *sc, struct bioc_alarm *ba) { uint32_t opc, dir = MFI_DATA_NONE; int rv = 0; int8_t ret; switch (ba->ba_opcode) { case BIOC_SADISABLE: opc = MR_DCMD_SPEAKER_DISABLE; break; case BIOC_SAENABLE: opc = MR_DCMD_SPEAKER_ENABLE; break; case BIOC_SASILENCE: opc = MR_DCMD_SPEAKER_SILENCE; break; case BIOC_GASTATUS: opc = MR_DCMD_SPEAKER_GET; dir = MFI_DATA_IN; break; case BIOC_SATEST: opc = MR_DCMD_SPEAKER_TEST; break; default: DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_alarm biocalarm invalid " "opcode %x\n", DEVNAME(sc), ba->ba_opcode); return EINVAL; } if (mfi_mgmt_internal(sc, opc, dir, sizeof(ret), &ret, NULL, false)) rv = EINVAL; else if (ba->ba_opcode == BIOC_GASTATUS) ba->ba_status = ret; else ba->ba_status = 0; return rv; } static int mfi_ioctl_blink(struct mfi_softc *sc, struct bioc_blink *bb) { int i, found, rv = EINVAL; union mfi_mbox mbox; uint32_t cmd; struct mfi_pd_list *pd; DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_blink %x\n", DEVNAME(sc), bb->bb_status); /* channel 0 means not in an enclosure so can't be blinked */ if (bb->bb_channel == 0) return EINVAL; pd = malloc(sizeof(*pd), M_DEVBUF, M_WAITOK); if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_LIST, MFI_DATA_IN, sizeof(*pd), pd, NULL, false)) goto done; for (i = 0, found = 0; i < pd->mpl_no_pd; i++) if (bb->bb_channel == pd->mpl_address[i].mpa_enc_index && bb->bb_target == pd->mpl_address[i].mpa_enc_slot) { found = 1; break; } if (!found) goto done; memset(&mbox, 0, sizeof(mbox)); mbox.s[0] = pd->mpl_address[i].mpa_pd_id; switch (bb->bb_status) { case BIOC_SBUNBLINK: cmd = MR_DCMD_PD_UNBLINK; break; case BIOC_SBBLINK: cmd = MR_DCMD_PD_BLINK; break; case BIOC_SBALARM: default: DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_blink biocblink invalid " "opcode %x\n", DEVNAME(sc), bb->bb_status); goto done; } if (mfi_mgmt_internal(sc, cmd, MFI_DATA_NONE, 0, NULL, &mbox, false)) goto done; rv = 0; done: free(pd, M_DEVBUF); return rv; } static int mfi_ioctl_setstate(struct mfi_softc *sc, struct bioc_setstate *bs) { struct mfi_pd_list *pd; int i, found, rv = EINVAL; union mfi_mbox mbox; DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_setstate %x\n", DEVNAME(sc), bs->bs_status); pd = malloc(sizeof(*pd), M_DEVBUF, M_WAITOK); if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_LIST, MFI_DATA_IN, sizeof(*pd), pd, NULL, false)) goto done; for (i = 0, found = 0; i < pd->mpl_no_pd; i++) if (bs->bs_channel == pd->mpl_address[i].mpa_enc_index && bs->bs_target == pd->mpl_address[i].mpa_enc_slot) { found = 1; break; } if (!found) goto done; memset(&mbox, 0, sizeof(mbox)); mbox.s[0] = pd->mpl_address[i].mpa_pd_id; switch (bs->bs_status) { case BIOC_SSONLINE: mbox.b[4] = MFI_PD_ONLINE; break; case BIOC_SSOFFLINE: mbox.b[4] = MFI_PD_OFFLINE; break; case BIOC_SSHOTSPARE: mbox.b[4] = MFI_PD_HOTSPARE; break; /* case BIOC_SSREBUILD: break; */ default: DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_setstate invalid " "opcode %x\n", DEVNAME(sc), bs->bs_status); goto done; } if (mfi_mgmt_internal(sc, MR_DCMD_PD_SET_STATE, MFI_DATA_NONE, 0, NULL, &mbox, false)) goto done; rv = 0; done: free(pd, M_DEVBUF); return rv; } static int mfi_bio_hs(struct mfi_softc *sc, int volid, int type, void *bio_hs) { struct mfi_conf *cfg; struct mfi_hotspare *hs; struct mfi_pd_details *pd; struct bioc_disk *sdhs; struct bioc_vol *vdhs; struct scsipi_inquiry_data *inqbuf; char vend[8+16+4+1]; int i, rv = EINVAL; uint32_t size; union mfi_mbox mbox; DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs %d\n", DEVNAME(sc), volid); if (!bio_hs) return EINVAL; pd = malloc(sizeof *pd, M_DEVBUF, M_WAITOK | M_ZERO); /* send single element command to retrieve size for full structure */ cfg = malloc(sizeof *cfg, M_DEVBUF, M_WAITOK); if (mfi_mgmt_internal(sc, MR_DCMD_CONF_GET, MFI_DATA_IN, sizeof *cfg, cfg, NULL, false)) goto freeme; size = cfg->mfc_size; free(cfg, M_DEVBUF); /* memory for read config */ cfg = malloc(size, M_DEVBUF, M_WAITOK|M_ZERO); if (mfi_mgmt_internal(sc, MR_DCMD_CONF_GET, MFI_DATA_IN, size, cfg, NULL, false)) goto freeme; /* calculate offset to hs structure */ hs = (struct mfi_hotspare *)( ((uint8_t *)cfg) + offsetof(struct mfi_conf, mfc_array) + cfg->mfc_array_size * cfg->mfc_no_array + cfg->mfc_ld_size * cfg->mfc_no_ld); if (volid < cfg->mfc_no_ld) goto freeme; /* not a hotspare */ if (volid > (cfg->mfc_no_ld + cfg->mfc_no_hs)) goto freeme; /* not a hotspare */ /* offset into hotspare structure */ i = volid - cfg->mfc_no_ld; DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs i %d volid %d no_ld %d no_hs %d " "hs %p cfg %p id %02x\n", DEVNAME(sc), i, volid, cfg->mfc_no_ld, cfg->mfc_no_hs, hs, cfg, hs[i].mhs_pd.mfp_id); /* get pd fields */ memset(&mbox, 0, sizeof(mbox)); mbox.s[0] = hs[i].mhs_pd.mfp_id; if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_INFO, MFI_DATA_IN, sizeof *pd, pd, &mbox, false)) { DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs illegal PD\n", DEVNAME(sc)); goto freeme; } switch (type) { case MFI_MGMT_VD: vdhs = bio_hs; vdhs->bv_status = BIOC_SVONLINE; vdhs->bv_size = pd->mpd_size * 512; /* bytes per block */ vdhs->bv_level = -1; /* hotspare */ vdhs->bv_nodisk = 1; break; case MFI_MGMT_SD: sdhs = bio_hs; sdhs->bd_status = BIOC_SDHOTSPARE; sdhs->bd_size = pd->mpd_size * 512; /* bytes per block */ sdhs->bd_channel = pd->mpd_enc_idx; sdhs->bd_target = pd->mpd_enc_slot; inqbuf = (struct scsipi_inquiry_data *)&pd->mpd_inq_data; memcpy(vend, inqbuf->vendor, sizeof(vend) - 1); vend[sizeof vend - 1] = '\0'; strlcpy(sdhs->bd_vendor, vend, sizeof(sdhs->bd_vendor)); break; default: goto freeme; } DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs 6\n", DEVNAME(sc)); rv = 0; freeme: free(pd, M_DEVBUF); free(cfg, M_DEVBUF); return rv; } static int mfi_destroy_sensors(struct mfi_softc *sc) { if (sc->sc_sme == NULL) return 0; sysmon_envsys_unregister(sc->sc_sme); sc->sc_sme = NULL; free(sc->sc_sensor, M_DEVBUF); return 0; } static int mfi_create_sensors(struct mfi_softc *sc) { int i; int nsensors = sc->sc_ld_cnt + 1; int rv; sc->sc_sme = sysmon_envsys_create(); sc->sc_sensor = malloc(sizeof(envsys_data_t) * nsensors, M_DEVBUF, M_NOWAIT | M_ZERO); if (sc->sc_sensor == NULL) { aprint_error_dev(sc->sc_dev, "can't allocate envsys_data_t\n"); return ENOMEM; } /* BBU */ sc->sc_sensor[0].units = ENVSYS_INDICATOR; sc->sc_sensor[0].state = ENVSYS_SINVALID; sc->sc_sensor[0].value_cur = 0; /* Enable monitoring for BBU state changes, if present */ if (sc->sc_info.mci_hw_present & MFI_INFO_HW_BBU) sc->sc_sensor[0].flags |= ENVSYS_FMONCRITICAL; snprintf(sc->sc_sensor[0].desc, sizeof(sc->sc_sensor[0].desc), "%s BBU", DEVNAME(sc)); if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor[0])) goto out; for (i = 1; i < nsensors; i++) { sc->sc_sensor[i].units = ENVSYS_DRIVE; sc->sc_sensor[i].state = ENVSYS_SINVALID; sc->sc_sensor[i].value_cur = ENVSYS_DRIVE_EMPTY; /* Enable monitoring for drive state changes */ sc->sc_sensor[i].flags |= ENVSYS_FMONSTCHANGED; /* logical drives */ snprintf(sc->sc_sensor[i].desc, sizeof(sc->sc_sensor[i].desc), "%s:%d", DEVNAME(sc), i - 1); if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor[i])) goto out; } sc->sc_sme->sme_name = DEVNAME(sc); sc->sc_sme->sme_cookie = sc; sc->sc_sme->sme_refresh = mfi_sensor_refresh; rv = sysmon_envsys_register(sc->sc_sme); if (rv != 0) { aprint_error_dev(sc->sc_dev, "unable to register with sysmon (rv = %d)\n", rv); goto out; } return 0; out: free(sc->sc_sensor, M_DEVBUF); sysmon_envsys_destroy(sc->sc_sme); sc->sc_sme = NULL; return EINVAL; } static void mfi_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *edata) { struct mfi_softc *sc = sme->sme_cookie; struct bioc_vol bv; int s; int error; if (edata->sensor >= sc->sc_ld_cnt + 1) return; if (edata->sensor == 0) { /* BBU */ struct mfi_bbu_status bbu_stat; int bbu_status; if ((sc->sc_info.mci_hw_present & MFI_INFO_HW_BBU) == 0) return; KERNEL_LOCK(1, curlwp); s = splbio(); bbu_status = mfi_get_bbu(sc, &bbu_stat); splx(s); KERNEL_UNLOCK_ONE(curlwp); switch (bbu_status) { case MFI_BBU_GOOD: edata->value_cur = 1; edata->state = ENVSYS_SVALID; if (!sc->sc_bbuok) aprint_normal_dev(sc->sc_dev, "BBU state changed to good\n"); sc->sc_bbuok = true; break; case MFI_BBU_BAD: edata->value_cur = 0; edata->state = ENVSYS_SCRITICAL; if (sc->sc_bbuok) aprint_normal_dev(sc->sc_dev, "BBU state changed to bad\n"); sc->sc_bbuok = false; break; case MFI_BBU_UNKNOWN: default: edata->value_cur = 0; edata->state = ENVSYS_SINVALID; sc->sc_bbuok = false; break; } return; } memset(&bv, 0, sizeof(bv)); bv.bv_volid = edata->sensor - 1; KERNEL_LOCK(1, curlwp); s = splbio(); error = mfi_ioctl_vol(sc, &bv); splx(s); KERNEL_UNLOCK_ONE(curlwp); if (error) bv.bv_status = BIOC_SVINVALID; bio_vol_to_envsys(edata, &bv); } #endif /* NBIO > 0 */ static uint32_t mfi_xscale_fw_state(struct mfi_softc *sc) { return mfi_read(sc, MFI_OMSG0); } static void mfi_xscale_intr_dis(struct mfi_softc *sc) { mfi_write(sc, MFI_OMSK, 0); } static void mfi_xscale_intr_ena(struct mfi_softc *sc) { mfi_write(sc, MFI_OMSK, MFI_ENABLE_INTR); } static int mfi_xscale_intr(struct mfi_softc *sc) { uint32_t status; status = mfi_read(sc, MFI_OSTS); if (!ISSET(status, MFI_OSTS_INTR_VALID)) return 0; /* write status back to acknowledge interrupt */ mfi_write(sc, MFI_OSTS, status); return 1; } static void mfi_xscale_post(struct mfi_softc *sc, struct mfi_ccb *ccb) { bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames), ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames), sc->sc_frames_size, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_sense), ccb->ccb_psense - MFIMEM_DVA(sc->sc_sense), MFI_SENSE_SIZE, BUS_DMASYNC_PREREAD); mfi_write(sc, MFI_IQP, (ccb->ccb_pframe >> 3) | ccb->ccb_extra_frames); ccb->ccb_state = MFI_CCB_RUNNING; } static uint32_t mfi_ppc_fw_state(struct mfi_softc *sc) { return mfi_read(sc, MFI_OSP); } static void mfi_ppc_intr_dis(struct mfi_softc *sc) { /* Taking a wild guess --dyoung */ mfi_write(sc, MFI_OMSK, ~(uint32_t)0x0); mfi_write(sc, MFI_ODC, 0xffffffff); } static void mfi_ppc_intr_ena(struct mfi_softc *sc) { mfi_write(sc, MFI_ODC, 0xffffffff); mfi_write(sc, MFI_OMSK, ~0x80000004); } static int mfi_ppc_intr(struct mfi_softc *sc) { uint32_t status; status = mfi_read(sc, MFI_OSTS); if (!ISSET(status, MFI_OSTS_PPC_INTR_VALID)) return 0; /* write status back to acknowledge interrupt */ mfi_write(sc, MFI_ODC, status); return 1; } static void mfi_ppc_post(struct mfi_softc *sc, struct mfi_ccb *ccb) { mfi_write(sc, MFI_IQP, 0x1 | ccb->ccb_pframe | (ccb->ccb_extra_frames << 1)); ccb->ccb_state = MFI_CCB_RUNNING; } u_int32_t mfi_gen2_fw_state(struct mfi_softc *sc) { return (mfi_read(sc, MFI_OSP)); } void mfi_gen2_intr_dis(struct mfi_softc *sc) { mfi_write(sc, MFI_OMSK, 0xffffffff); mfi_write(sc, MFI_ODC, 0xffffffff); } void mfi_gen2_intr_ena(struct mfi_softc *sc) { mfi_write(sc, MFI_ODC, 0xffffffff); mfi_write(sc, MFI_OMSK, ~MFI_OSTS_GEN2_INTR_VALID); } int mfi_gen2_intr(struct mfi_softc *sc) { u_int32_t status; status = mfi_read(sc, MFI_OSTS); if (!ISSET(status, MFI_OSTS_GEN2_INTR_VALID)) return (0); /* write status back to acknowledge interrupt */ mfi_write(sc, MFI_ODC, status); return (1); } void mfi_gen2_post(struct mfi_softc *sc, struct mfi_ccb *ccb) { mfi_write(sc, MFI_IQP, 0x1 | ccb->ccb_pframe | (ccb->ccb_extra_frames << 1)); ccb->ccb_state = MFI_CCB_RUNNING; } u_int32_t mfi_skinny_fw_state(struct mfi_softc *sc) { return (mfi_read(sc, MFI_OSP)); } void mfi_skinny_intr_dis(struct mfi_softc *sc) { mfi_write(sc, MFI_OMSK, 0); } void mfi_skinny_intr_ena(struct mfi_softc *sc) { mfi_write(sc, MFI_OMSK, ~0x00000001); } int mfi_skinny_intr(struct mfi_softc *sc) { u_int32_t status; status = mfi_read(sc, MFI_OSTS); if (!ISSET(status, MFI_OSTS_SKINNY_INTR_VALID)) return (0); /* write status back to acknowledge interrupt */ mfi_write(sc, MFI_OSTS, status); return (1); } void mfi_skinny_post(struct mfi_softc *sc, struct mfi_ccb *ccb) { mfi_write(sc, MFI_IQPL, 0x1 | ccb->ccb_pframe | (ccb->ccb_extra_frames << 1)); mfi_write(sc, MFI_IQPH, 0x00000000); ccb->ccb_state = MFI_CCB_RUNNING; } #define MFI_FUSION_ENABLE_INTERRUPT_MASK (0x00000008) void mfi_tbolt_intr_ena(struct mfi_softc *sc) { mfi_write(sc, MFI_OMSK, ~MFI_FUSION_ENABLE_INTERRUPT_MASK); mfi_read(sc, MFI_OMSK); } void mfi_tbolt_intr_dis(struct mfi_softc *sc) { mfi_write(sc, MFI_OMSK, 0xFFFFFFFF); mfi_read(sc, MFI_OMSK); } int mfi_tbolt_intr(struct mfi_softc *sc) { int32_t status; status = mfi_read(sc, MFI_OSTS); if (ISSET(status, 0x1)) { mfi_write(sc, MFI_OSTS, status); mfi_read(sc, MFI_OSTS); if (ISSET(status, MFI_STATE_CHANGE_INTERRUPT)) return 0; return 1; } if (!ISSET(status, MFI_FUSION_ENABLE_INTERRUPT_MASK)) return 0; mfi_read(sc, MFI_OSTS); return 1; } u_int32_t mfi_tbolt_fw_state(struct mfi_softc *sc) { return mfi_read(sc, MFI_OSP); } void mfi_tbolt_post(struct mfi_softc *sc, struct mfi_ccb *ccb) { if (sc->sc_MFA_enabled) { if ((ccb->ccb_flags & MFI_CCB_F_TBOLT) == 0) mfi_tbolt_build_mpt_ccb(ccb); mfi_write(sc, MFI_IQPL, ccb->ccb_tb_request_desc.words & 0xFFFFFFFF); mfi_write(sc, MFI_IQPH, ccb->ccb_tb_request_desc.words >> 32); ccb->ccb_state = MFI_CCB_RUNNING; return; } uint64_t bus_add = ccb->ccb_pframe; bus_add |= (MFI_REQ_DESCRIPT_FLAGS_MFA << MFI_REQ_DESCRIPT_FLAGS_TYPE_SHIFT); mfi_write(sc, MFI_IQPL, bus_add); mfi_write(sc, MFI_IQPH, bus_add >> 32); ccb->ccb_state = MFI_CCB_RUNNING; } static void mfi_tbolt_build_mpt_ccb(struct mfi_ccb *ccb) { union mfi_mpi2_request_descriptor *req_desc = &ccb->ccb_tb_request_desc; struct mfi_mpi2_request_raid_scsi_io *io_req = ccb->ccb_tb_io_request; struct mpi25_ieee_sge_chain64 *mpi25_ieee_chain; io_req->Function = MPI2_FUNCTION_PASSTHRU_IO_REQUEST; io_req->SGLOffset0 = offsetof(struct mfi_mpi2_request_raid_scsi_io, SGL) / 4; io_req->ChainOffset = offsetof(struct mfi_mpi2_request_raid_scsi_io, SGL) / 16; mpi25_ieee_chain = (struct mpi25_ieee_sge_chain64 *)&io_req->SGL.IeeeChain; mpi25_ieee_chain->Address = ccb->ccb_pframe; /* In MFI pass thru, nextChainOffset will always be zero to indicate the end of the chain. */ mpi25_ieee_chain->Flags= MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | MPI2_IEEE_SGE_FLAGS_IOCPLBNTA_ADDR; /* setting the length to the maximum length */ mpi25_ieee_chain->Length = 1024; req_desc->header.RequestFlags = (MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO << MFI_REQ_DESCRIPT_FLAGS_TYPE_SHIFT); ccb->ccb_flags |= MFI_CCB_F_TBOLT; bus_dmamap_sync(ccb->ccb_sc->sc_dmat, MFIMEM_MAP(ccb->ccb_sc->sc_tbolt_reqmsgpool), ccb->ccb_tb_pio_request - MFIMEM_DVA(ccb->ccb_sc->sc_tbolt_reqmsgpool), MEGASAS_THUNDERBOLT_NEW_MSG_SIZE, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } /* * Description: * This function will prepare message pools for the Thunderbolt controller */ static int mfi_tbolt_init_desc_pool(struct mfi_softc *sc) { uint32_t offset = 0; uint8_t *addr = MFIMEM_KVA(sc->sc_tbolt_reqmsgpool); /* Request Descriptors alignment restrictions */ KASSERT(((uintptr_t)addr & 0xFF) == 0); /* Skip request message pool */ addr = &addr[MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1)]; /* Reply Frame Pool is initialized */ sc->sc_reply_frame_pool = (struct mfi_mpi2_reply_header *) addr; KASSERT(((uintptr_t)addr & 0xFF) == 0); offset = (uintptr_t)sc->sc_reply_frame_pool - (uintptr_t)MFIMEM_KVA(sc->sc_tbolt_reqmsgpool); sc->sc_reply_frame_busaddr = MFIMEM_DVA(sc->sc_tbolt_reqmsgpool) + offset; /* initializing reply address to 0xFFFFFFFF */ memset((uint8_t *)sc->sc_reply_frame_pool, 0xFF, (MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size)); /* Skip Reply Frame Pool */ addr += MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size; sc->sc_reply_pool_limit = (void *)addr; offset = MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size; sc->sc_sg_frame_busaddr = sc->sc_reply_frame_busaddr + offset; /* initialize the last_reply_idx to 0 */ sc->sc_last_reply_idx = 0; offset = (sc->sc_sg_frame_busaddr + (MEGASAS_MAX_SZ_CHAIN_FRAME * sc->sc_max_cmds)) - MFIMEM_DVA(sc->sc_tbolt_reqmsgpool); KASSERT(offset <= sc->sc_tbolt_reqmsgpool->am_size); bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_reqmsgpool), 0, MFIMEM_MAP(sc->sc_tbolt_reqmsgpool)->dm_mapsize, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return 0; } /* * This routine prepare and issue INIT2 frame to the Firmware */ static int mfi_tbolt_init_MFI_queue(struct mfi_softc *sc) { struct mpi2_ioc_init_request *mpi2IocInit; struct mfi_init_frame *mfi_init; struct mfi_ccb *ccb; bus_addr_t phyAddress; mfi_address *mfiAddressTemp; int s; char *verbuf; char wqbuf[10]; /* Check if initialization is already completed */ if (sc->sc_MFA_enabled) { return 1; } mpi2IocInit = (struct mpi2_ioc_init_request *)MFIMEM_KVA(sc->sc_tbolt_ioc_init); s = splbio(); if ((ccb = mfi_get_ccb(sc)) == NULL) { splx(s); return (EBUSY); } mfi_init = &ccb->ccb_frame->mfr_init; memset(mpi2IocInit, 0, sizeof(struct mpi2_ioc_init_request)); mpi2IocInit->Function = MPI2_FUNCTION_IOC_INIT; mpi2IocInit->WhoInit = MPI2_WHOINIT_HOST_DRIVER; /* set MsgVersion and HeaderVersion host driver was built with */ mpi2IocInit->MsgVersion = MPI2_VERSION; mpi2IocInit->HeaderVersion = MPI2_HEADER_VERSION; mpi2IocInit->SystemRequestFrameSize = MEGASAS_THUNDERBOLT_NEW_MSG_SIZE/4; mpi2IocInit->ReplyDescriptorPostQueueDepth = (uint16_t)sc->sc_reply_pool_size; mpi2IocInit->ReplyFreeQueueDepth = 0; /* Not supported by MR. */ /* Get physical address of reply frame pool */ phyAddress = sc->sc_reply_frame_busaddr; mfiAddressTemp = (mfi_address *)&mpi2IocInit->ReplyDescriptorPostQueueAddress; mfiAddressTemp->u.addressLow = (uint32_t)phyAddress; mfiAddressTemp->u.addressHigh = (uint32_t)((uint64_t)phyAddress >> 32); /* Get physical address of request message pool */ phyAddress = MFIMEM_DVA(sc->sc_tbolt_reqmsgpool); mfiAddressTemp = (mfi_address *)&mpi2IocInit->SystemRequestFrameBaseAddress; mfiAddressTemp->u.addressLow = (uint32_t)phyAddress; mfiAddressTemp->u.addressHigh = (uint32_t)((uint64_t)phyAddress >> 32); mpi2IocInit->ReplyFreeQueueAddress = 0; /* Not supported by MR. */ mpi2IocInit->TimeStamp = time_uptime; verbuf = MFIMEM_KVA(sc->sc_tbolt_verbuf); snprintf(verbuf, strlen(MEGASAS_VERSION) + 2, "%s\n", MEGASAS_VERSION); bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_verbuf), 0, MFIMEM_MAP(sc->sc_tbolt_verbuf)->dm_mapsize, BUS_DMASYNC_PREWRITE); mfi_init->driver_ver_lo = htole32(MFIMEM_DVA(sc->sc_tbolt_verbuf)); mfi_init->driver_ver_hi = htole32((uint64_t)MFIMEM_DVA(sc->sc_tbolt_verbuf) >> 32); bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_ioc_init), 0, MFIMEM_MAP(sc->sc_tbolt_ioc_init)->dm_mapsize, BUS_DMASYNC_PREWRITE); /* Get the physical address of the mpi2 ioc init command */ phyAddress = MFIMEM_DVA(sc->sc_tbolt_ioc_init); mfi_init->mif_qinfo_new_addr_lo = htole32(phyAddress); mfi_init->mif_qinfo_new_addr_hi = htole32((uint64_t)phyAddress >> 32); mfi_init->mif_header.mfh_cmd = MFI_CMD_INIT; mfi_init->mif_header.mfh_data_len = sizeof(struct mpi2_ioc_init_request); if (mfi_poll(ccb) != 0) { aprint_error_dev(sc->sc_dev, "failed to send IOC init2 " "command at 0x%" PRIx64 "\n", (uint64_t)ccb->ccb_pframe); splx(s); return 1; } bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_verbuf), 0, MFIMEM_MAP(sc->sc_tbolt_verbuf)->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_ioc_init), 0, MFIMEM_MAP(sc->sc_tbolt_ioc_init)->dm_mapsize, BUS_DMASYNC_POSTWRITE); mfi_put_ccb(ccb); splx(s); if (mfi_init->mif_header.mfh_cmd_status == 0) { sc->sc_MFA_enabled = 1; } else { aprint_error_dev(sc->sc_dev, "Init command Failed %x\n", mfi_init->mif_header.mfh_cmd_status); return 1; } snprintf(wqbuf, sizeof(wqbuf), "%swq", DEVNAME(sc)); if (workqueue_create(&sc->sc_ldsync_wq, wqbuf, mfi_tbolt_sync_map_info, sc, PRIBIO, IPL_BIO, 0) != 0) { aprint_error_dev(sc->sc_dev, "workqueue_create failed\n"); return 1; } workqueue_enqueue(sc->sc_ldsync_wq, &sc->sc_ldsync_wk, NULL); return 0; } int mfi_tbolt_intrh(void *arg) { struct mfi_softc *sc = arg; struct mfi_ccb *ccb; union mfi_mpi2_reply_descriptor *desc; int smid, num_completed; if (!mfi_tbolt_intr(sc)) return 0; DNPRINTF(MFI_D_INTR, "%s: mfi_tbolt_intrh %#lx %#lx\n", DEVNAME(sc), (u_long)sc, (u_long)sc->sc_last_reply_idx); KASSERT(sc->sc_last_reply_idx < sc->sc_reply_pool_size); desc = (union mfi_mpi2_reply_descriptor *) ((uintptr_t)sc->sc_reply_frame_pool + sc->sc_last_reply_idx * MEGASAS_THUNDERBOLT_REPLY_SIZE); bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_reqmsgpool), MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1), MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); num_completed = 0; while ((desc->header.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK) != MPI2_RPY_DESCRIPT_FLAGS_UNUSED) { smid = desc->header.SMID; KASSERT(smid > 0 && smid <= sc->sc_max_cmds); ccb = &sc->sc_ccb[smid - 1]; DNPRINTF(MFI_D_INTR, "%s: mfi_tbolt_intr SMID %#x reply_idx %#x " "desc %#" PRIx64 " ccb %p\n", DEVNAME(sc), smid, sc->sc_last_reply_idx, desc->words, ccb); KASSERT(ccb->ccb_state == MFI_CCB_RUNNING); if (ccb->ccb_flags & MFI_CCB_F_TBOLT_IO && ccb->ccb_tb_io_request->ChainOffset != 0) { bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_reqmsgpool), ccb->ccb_tb_psg_frame - MFIMEM_DVA(sc->sc_tbolt_reqmsgpool), MEGASAS_MAX_SZ_CHAIN_FRAME, BUS_DMASYNC_POSTREAD); } if (ccb->ccb_flags & MFI_CCB_F_TBOLT_IO) { bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_reqmsgpool), ccb->ccb_tb_pio_request - MFIMEM_DVA(sc->sc_tbolt_reqmsgpool), MEGASAS_THUNDERBOLT_NEW_MSG_SIZE, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); } if (ccb->ccb_done) ccb->ccb_done(ccb); else ccb->ccb_state = MFI_CCB_DONE; sc->sc_last_reply_idx++; if (sc->sc_last_reply_idx >= sc->sc_reply_pool_size) { sc->sc_last_reply_idx = 0; } desc->words = ~0x0; /* Get the next reply descriptor */ desc = (union mfi_mpi2_reply_descriptor *) ((uintptr_t)sc->sc_reply_frame_pool + sc->sc_last_reply_idx * MEGASAS_THUNDERBOLT_REPLY_SIZE); num_completed++; } if (num_completed == 0) return 0; bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_reqmsgpool), MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1), MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); mfi_write(sc, MFI_RPI, sc->sc_last_reply_idx); return 1; } int mfi_tbolt_scsi_ld_io(struct mfi_ccb *ccb, struct scsipi_xfer *xs, uint64_t blockno, uint32_t blockcnt) { struct scsipi_periph *periph = xs->xs_periph; struct mfi_mpi2_request_raid_scsi_io *io_req; int sge_count; DNPRINTF(MFI_D_CMD, "%s: mfi_tbolt_scsi_ld_io: %d\n", device_xname(periph->periph_channel->chan_adapter->adapt_dev), periph->periph_target); if (!xs->data) return 1; ccb->ccb_done = mfi_tbolt_scsi_ld_done; ccb->ccb_xs = xs; ccb->ccb_data = xs->data; ccb->ccb_len = xs->datalen; io_req = ccb->ccb_tb_io_request; /* Just the CDB length,rest of the Flags are zero */ io_req->IoFlags = xs->cmdlen; memset(io_req->CDB.CDB32, 0, 32); memcpy(io_req->CDB.CDB32, &xs->cmdstore, xs->cmdlen); io_req->RaidContext.TargetID = periph->periph_target; io_req->RaidContext.Status = 0; io_req->RaidContext.exStatus = 0; io_req->RaidContext.timeoutValue = MFI_FUSION_FP_DEFAULT_TIMEOUT; io_req->Function = MPI2_FUNCTION_LD_IO_REQUEST; io_req->DevHandle = periph->periph_target; ccb->ccb_tb_request_desc.header.RequestFlags = (MFI_REQ_DESCRIPT_FLAGS_LD_IO << MFI_REQ_DESCRIPT_FLAGS_TYPE_SHIFT); io_req->DataLength = blockcnt * MFI_SECTOR_LEN; if (xs->xs_control & XS_CTL_DATA_IN) { io_req->Control = MPI2_SCSIIO_CONTROL_READ; ccb->ccb_direction = MFI_DATA_IN; } else { io_req->Control = MPI2_SCSIIO_CONTROL_WRITE; ccb->ccb_direction = MFI_DATA_OUT; } sge_count = mfi_tbolt_create_sgl(ccb, (xs->xs_control & XS_CTL_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK ); if (sge_count < 0) return 1; KASSERT(sge_count <= ccb->ccb_sc->sc_max_sgl); io_req->RaidContext.numSGE = sge_count; io_req->SGLFlags = MPI2_SGE_FLAGS_64_BIT_ADDRESSING; io_req->SGLOffset0 = offsetof(struct mfi_mpi2_request_raid_scsi_io, SGL) / 4; io_req->SenseBufferLowAddress = htole32(ccb->ccb_psense); io_req->SenseBufferLength = MFI_SENSE_SIZE; ccb->ccb_flags |= MFI_CCB_F_TBOLT | MFI_CCB_F_TBOLT_IO; bus_dmamap_sync(ccb->ccb_sc->sc_dmat, MFIMEM_MAP(ccb->ccb_sc->sc_tbolt_reqmsgpool), ccb->ccb_tb_pio_request - MFIMEM_DVA(ccb->ccb_sc->sc_tbolt_reqmsgpool), MEGASAS_THUNDERBOLT_NEW_MSG_SIZE, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return 0; } static void mfi_tbolt_scsi_ld_done(struct mfi_ccb *ccb) { struct mfi_mpi2_request_raid_scsi_io *io_req = ccb->ccb_tb_io_request; mfi_scsi_xs_done(ccb, io_req->RaidContext.Status, io_req->RaidContext.exStatus); } static int mfi_tbolt_create_sgl(struct mfi_ccb *ccb, int flags) { struct mfi_softc *sc = ccb->ccb_sc; bus_dma_segment_t *sgd; int error, i, sge_idx, sge_count; struct mfi_mpi2_request_raid_scsi_io *io_req; struct mpi25_ieee_sge_chain64 *sgl_ptr; DNPRINTF(MFI_D_DMA, "%s: mfi_tbolt_create_sgl %#lx\n", DEVNAME(sc), (u_long)ccb->ccb_data); if (!ccb->ccb_data) return -1; KASSERT(flags == BUS_DMA_NOWAIT || !cpu_intr_p()); error = bus_dmamap_load(sc->sc_datadmat, ccb->ccb_dmamap, ccb->ccb_data, ccb->ccb_len, NULL, flags); if (error) { if (error == EFBIG) aprint_error_dev(sc->sc_dev, "more than %d dma segs\n", sc->sc_max_sgl); else aprint_error_dev(sc->sc_dev, "error %d loading dma map\n", error); return -1; } io_req = ccb->ccb_tb_io_request; sgl_ptr = &io_req->SGL.IeeeChain.Chain64; sge_count = ccb->ccb_dmamap->dm_nsegs; sgd = ccb->ccb_dmamap->dm_segs; KASSERT(sge_count <= sc->sc_max_sgl); KASSERT(sge_count <= (MEGASAS_THUNDERBOLT_MAX_SGE_IN_MAINMSG - 1 + MEGASAS_THUNDERBOLT_MAX_SGE_IN_CHAINMSG)); if (sge_count > MEGASAS_THUNDERBOLT_MAX_SGE_IN_MAINMSG) { /* One element to store the chain info */ sge_idx = MEGASAS_THUNDERBOLT_MAX_SGE_IN_MAINMSG - 1; DNPRINTF(MFI_D_DMA, "mfi sge_idx %d sge_count %d io_req paddr %jx\n", sge_idx, sge_count, (uintmax_t)ccb->ccb_tb_pio_request); } else { sge_idx = sge_count; } for (i = 0; i < sge_idx; i++) { sgl_ptr->Address = htole64(sgd[i].ds_addr); sgl_ptr->Length = htole32(sgd[i].ds_len); sgl_ptr->Flags = 0; if (sge_idx < sge_count) { DNPRINTF(MFI_D_DMA, "sgl %p %d 0x%" PRIx64 " len 0x%" PRIx32 " flags 0x%x\n", sgl_ptr, i, sgl_ptr->Address, sgl_ptr->Length, sgl_ptr->Flags); } sgl_ptr++; } io_req->ChainOffset = 0; if (sge_idx < sge_count) { struct mpi25_ieee_sge_chain64 *sg_chain; io_req->ChainOffset = MEGASAS_THUNDERBOLT_CHAIN_OFF_MAINMSG; sg_chain = sgl_ptr; /* Prepare chain element */ sg_chain->NextChainOffset = 0; sg_chain->Flags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | MPI2_IEEE_SGE_FLAGS_IOCPLBNTA_ADDR); sg_chain->Length = (sizeof(mpi2_sge_io_union) * (sge_count - sge_idx)); sg_chain->Address = ccb->ccb_tb_psg_frame; DNPRINTF(MFI_D_DMA, "sgl %p chain 0x%" PRIx64 " len 0x%" PRIx32 " flags 0x%x\n", sg_chain, sg_chain->Address, sg_chain->Length, sg_chain->Flags); sgl_ptr = &ccb->ccb_tb_sg_frame->IeeeChain.Chain64; for (; i < sge_count; i++) { sgl_ptr->Address = htole64(sgd[i].ds_addr); sgl_ptr->Length = htole32(sgd[i].ds_len); sgl_ptr->Flags = 0; DNPRINTF(MFI_D_DMA, "sgl %p %d 0x%" PRIx64 " len 0x%" PRIx32 " flags 0x%x\n", sgl_ptr, i, sgl_ptr->Address, sgl_ptr->Length, sgl_ptr->Flags); sgl_ptr++; } bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_reqmsgpool), ccb->ccb_tb_psg_frame - MFIMEM_DVA(sc->sc_tbolt_reqmsgpool), MEGASAS_MAX_SZ_CHAIN_FRAME, BUS_DMASYNC_PREREAD); } if (ccb->ccb_direction == MFI_DATA_IN) { bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0, ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); } else { bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0, ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); } return sge_count; } /* * The ThunderBolt HW has an option for the driver to directly * access the underlying disks and operate on the RAID. To * do this there needs to be a capability to keep the RAID controller * and driver in sync. The FreeBSD driver does not take advantage * of this feature since it adds a lot of complexity and slows down * performance. Performance is gained by using the controller's * cache etc. * * Even though this driver doesn't access the disks directly, an * AEN like command is used to inform the RAID firmware to "sync" * with all LD's via the MFI_DCMD_LD_MAP_GET_INFO command. This * command in write mode will return when the RAID firmware has * detected a change to the RAID state. Examples of this type * of change are removing a disk. Once the command returns then * the driver needs to acknowledge this and "sync" all LD's again. * This repeats until we shutdown. Then we need to cancel this * pending command. * * If this is not done right the RAID firmware will not remove a * pulled drive and the RAID won't go degraded etc. Effectively, * stopping any RAID mangement to functions. * * Doing another LD sync, requires the use of an event since the * driver needs to do a mfi_wait_command and can't do that in an * interrupt thread. * * The driver could get the RAID state via the MFI_DCMD_LD_MAP_GET_INFO * That requires a bunch of structure and it is simpler to just do * the MFI_DCMD_LD_GET_LIST versus walking the RAID map. */ void mfi_tbolt_sync_map_info(struct work *w, void *v) { struct mfi_softc *sc = v; int i; struct mfi_ccb *ccb = NULL; union mfi_mbox mbox; struct mfi_ld *ld_sync; size_t ld_size; int s; DNPRINTF(MFI_D_SYNC, "%s: mfi_tbolt_sync_map_info\n", DEVNAME(sc)); again: ld_sync = NULL; s = splbio(); if (sc->sc_ldsync_ccb != NULL) { splx(s); return; } if (mfi_mgmt_internal(sc, MR_DCMD_LD_GET_LIST, MFI_DATA_IN, sizeof(sc->sc_ld_list), &sc->sc_ld_list, NULL, false)) { aprint_error_dev(sc->sc_dev, "MR_DCMD_LD_GET_LIST failed\n"); goto err; } ld_size = sizeof(*ld_sync) * sc->sc_ld_list.mll_no_ld; ld_sync = malloc(ld_size, M_DEVBUF, M_WAITOK | M_ZERO); if (ld_sync == NULL) { aprint_error_dev(sc->sc_dev, "Failed to allocate sync\n"); goto err; } for (i = 0; i < sc->sc_ld_list.mll_no_ld; i++) { ld_sync[i] = sc->sc_ld_list.mll_list[i].mll_ld; } if ((ccb = mfi_get_ccb(sc)) == NULL) { aprint_error_dev(sc->sc_dev, "Failed to get sync command\n"); goto err; } sc->sc_ldsync_ccb = ccb; memset(&mbox, 0, sizeof(mbox)); mbox.b[0] = sc->sc_ld_list.mll_no_ld; mbox.b[1] = MFI_DCMD_MBOX_PEND_FLAG; if (mfi_mgmt(ccb, NULL, MR_DCMD_LD_MAP_GET_INFO, MFI_DATA_OUT, ld_size, ld_sync, &mbox)) { aprint_error_dev(sc->sc_dev, "Failed to create sync command\n"); goto err; } /* * we won't sleep on this command, so we have to override * the callback set up by mfi_mgmt() */ ccb->ccb_done = mfi_sync_map_complete; mfi_post(sc, ccb); splx(s); return; err: if (ld_sync) free(ld_sync, M_DEVBUF); if (ccb) mfi_put_ccb(ccb); sc->sc_ldsync_ccb = NULL; splx(s); kpause("ldsyncp", 0, hz, NULL); goto again; } static void mfi_sync_map_complete(struct mfi_ccb *ccb) { struct mfi_softc *sc = ccb->ccb_sc; bool aborted = !sc->sc_running; DNPRINTF(MFI_D_SYNC, "%s: mfi_sync_map_complete\n", DEVNAME(ccb->ccb_sc)); KASSERT(sc->sc_ldsync_ccb == ccb); mfi_mgmt_done(ccb); free(ccb->ccb_data, M_DEVBUF); if (ccb->ccb_flags & MFI_CCB_F_ERR) { aprint_error_dev(sc->sc_dev, "sync command failed\n"); aborted = true; } mfi_put_ccb(ccb); sc->sc_ldsync_ccb = NULL; /* set it up again so the driver can catch more events */ if (!aborted) { workqueue_enqueue(sc->sc_ldsync_wq, &sc->sc_ldsync_wk, NULL); } } static int mfifopen(dev_t dev, int flag, int mode, struct lwp *l) { struct mfi_softc *sc; if ((sc = device_lookup_private(&mfi_cd, minor(dev))) == NULL) return (ENXIO); return (0); } static int mfifclose(dev_t dev, int flag, int mode, struct lwp *l) { return (0); } static int mfifioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l) { struct mfi_softc *sc; struct mfi_ioc_packet *ioc = data; uint8_t *udata; struct mfi_ccb *ccb = NULL; int ctx, i, s, error; union mfi_sense_ptr sense_ptr; switch (cmd) { case MFI_CMD: sc = device_lookup_private(&mfi_cd, ioc->mfi_adapter_no); break; default: return ENOTTY; } if (sc == NULL) return (ENXIO); if (sc->sc_opened) return (EBUSY); switch (cmd) { case MFI_CMD: error = kauth_authorize_device_passthru(l->l_cred, dev, KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data); if (error) return error; if (ioc->mfi_sge_count > MAX_IOCTL_SGE) return EINVAL; s = splbio(); if ((ccb = mfi_get_ccb(sc)) == NULL) return ENOMEM; ccb->ccb_data = NULL; ctx = ccb->ccb_frame->mfr_header.mfh_context; memcpy(ccb->ccb_frame, ioc->mfi_frame.raw, sizeof(*ccb->ccb_frame)); ccb->ccb_frame->mfr_header.mfh_context = ctx; ccb->ccb_frame->mfr_header.mfh_scsi_status = 0; ccb->ccb_frame->mfr_header.mfh_pad0 = 0; ccb->ccb_frame_size = (sizeof(union mfi_sgl) * ioc->mfi_sge_count) + ioc->mfi_sgl_off; if (ioc->mfi_sge_count > 0) { ccb->ccb_sgl = (union mfi_sgl *) &ccb->ccb_frame->mfr_bytes[ioc->mfi_sgl_off]; } if (ccb->ccb_frame->mfr_header.mfh_flags & MFI_FRAME_DIR_READ) ccb->ccb_direction = MFI_DATA_IN; if (ccb->ccb_frame->mfr_header.mfh_flags & MFI_FRAME_DIR_WRITE) ccb->ccb_direction = MFI_DATA_OUT; ccb->ccb_len = ccb->ccb_frame->mfr_header.mfh_data_len; if (ccb->ccb_len > MAXPHYS) { error = ENOMEM; goto out; } if (ccb->ccb_len && (ccb->ccb_direction & (MFI_DATA_IN | MFI_DATA_OUT)) != 0) { udata = malloc(ccb->ccb_len, M_DEVBUF, M_WAITOK|M_ZERO); if (udata == NULL) { error = ENOMEM; goto out; } ccb->ccb_data = udata; if (ccb->ccb_direction & MFI_DATA_OUT) { for (i = 0; i < ioc->mfi_sge_count; i++) { error = copyin(ioc->mfi_sgl[i].iov_base, udata, ioc->mfi_sgl[i].iov_len); if (error) goto out; udata = &udata[ ioc->mfi_sgl[i].iov_len]; } } if (mfi_create_sgl(ccb, BUS_DMA_WAITOK)) { error = EIO; goto out; } } if (ccb->ccb_frame->mfr_header.mfh_cmd == MFI_CMD_PD_SCSI_IO) { ccb->ccb_frame->mfr_io.mif_sense_addr_lo = htole32(ccb->ccb_psense); ccb->ccb_frame->mfr_io.mif_sense_addr_hi = 0; } ccb->ccb_done = mfi_mgmt_done; mfi_post(sc, ccb); while (ccb->ccb_state != MFI_CCB_DONE) tsleep(ccb, PRIBIO, "mfi_fioc", 0); if (ccb->ccb_direction & MFI_DATA_IN) { udata = ccb->ccb_data; for (i = 0; i < ioc->mfi_sge_count; i++) { error = copyout(udata, ioc->mfi_sgl[i].iov_base, ioc->mfi_sgl[i].iov_len); if (error) goto out; udata = &udata[ ioc->mfi_sgl[i].iov_len]; } } if (ioc->mfi_sense_len) { memcpy(&sense_ptr.sense_ptr_data[0], &ioc->mfi_frame.raw[ioc->mfi_sense_off], sizeof(sense_ptr.sense_ptr_data)); error = copyout(ccb->ccb_sense, sense_ptr.user_space, sizeof(sense_ptr.sense_ptr_data)); if (error) goto out; } memcpy(ioc->mfi_frame.raw, ccb->ccb_frame, sizeof(*ccb->ccb_frame)); break; default: printf("mfifioctl unhandled cmd 0x%lx\n", cmd); return ENOTTY; } out: if (ccb->ccb_data) free(ccb->ccb_data, M_DEVBUF); if (ccb) mfi_put_ccb(ccb); splx(s); return error; }