/* $NetBSD: adv.c,v 1.48.6.1 2019/12/18 20:04:33 martin Exp $ */ /* * Generic driver for the Advanced Systems Inc. Narrow SCSI controllers * * Copyright (c) 1998 The NetBSD Foundation, Inc. * All rights reserved. * * Author: Baldassare Dante Profeta * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: adv.c,v 1.48.6.1 2019/12/18 20:04:33 martin Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef DDB #define Debugger() panic("should call debugger here (adv.c)") #endif /* ! DDB */ /* #define ASC_DEBUG */ /******************************************************************************/ static int adv_alloc_control_data(ASC_SOFTC *); static void adv_free_control_data(ASC_SOFTC *); static int adv_create_ccbs(ASC_SOFTC *, ADV_CCB *, int); static void adv_free_ccb(ASC_SOFTC *, ADV_CCB *); static void adv_reset_ccb(ADV_CCB *); static int adv_init_ccb(ASC_SOFTC *, ADV_CCB *); static ADV_CCB *adv_get_ccb(ASC_SOFTC *); static void adv_queue_ccb(ASC_SOFTC *, ADV_CCB *); static void adv_start_ccbs(ASC_SOFTC *); static void adv_scsipi_request(struct scsipi_channel *, scsipi_adapter_req_t, void *); static void advminphys(struct buf *); static void adv_narrow_isr_callback(ASC_SOFTC *, ASC_QDONE_INFO *); static int adv_poll(ASC_SOFTC *, struct scsipi_xfer *, int); static void adv_timeout(void *); static void adv_watchdog(void *); /******************************************************************************/ #define ADV_ABORT_TIMEOUT 2000 /* time to wait for abort (mSec) */ #define ADV_WATCH_TIMEOUT 1000 /* time to wait for watchdog (mSec) */ /******************************************************************************/ /* Control Blocks routines */ /******************************************************************************/ static int adv_alloc_control_data(ASC_SOFTC *sc) { int error; /* * Allocate the control blocks. */ if ((error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct adv_control), PAGE_SIZE, 0, &sc->sc_control_seg, 1, &sc->sc_control_nsegs, BUS_DMA_NOWAIT)) != 0) { aprint_error_dev(sc->sc_dev, "unable to allocate control " "structures, error = %d\n", error); return (error); } if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_control_seg, sc->sc_control_nsegs, sizeof(struct adv_control), (void **) & sc->sc_control, BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) { aprint_error_dev(sc->sc_dev, "unable to map control structures, error = %d\n", error); return (error); } /* * Create and load the DMA map used for the control blocks. */ if ((error = bus_dmamap_create(sc->sc_dmat, sizeof(struct adv_control), 1, sizeof(struct adv_control), 0, BUS_DMA_NOWAIT, &sc->sc_dmamap_control)) != 0) { aprint_error_dev(sc->sc_dev, "unable to create control DMA map, error = %d\n", error); return (error); } if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap_control, sc->sc_control, sizeof(struct adv_control), NULL, BUS_DMA_NOWAIT)) != 0) { aprint_error_dev(sc->sc_dev, "unable to load control DMA map, error = %d\n", error); return (error); } /* * Initialize the overrun_buf address. */ sc->overrun_buf = sc->sc_dmamap_control->dm_segs[0].ds_addr + offsetof(struct adv_control, overrun_buf); return (0); } static void adv_free_control_data(ASC_SOFTC *sc) { bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap_control); bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap_control); sc->sc_dmamap_control = NULL; bus_dmamem_unmap(sc->sc_dmat, (void *) sc->sc_control, sizeof(struct adv_control)); bus_dmamem_free(sc->sc_dmat, &sc->sc_control_seg, sc->sc_control_nsegs); } /* * Create a set of ccbs and add them to the free list. Called once * by adv_init(). We return the number of CCBs successfully created. */ static int adv_create_ccbs(ASC_SOFTC *sc, ADV_CCB *ccbstore, int count) { ADV_CCB *ccb; int i, error; memset(ccbstore, 0, sizeof(ADV_CCB) * count); for (i = 0; i < count; i++) { ccb = &ccbstore[i]; if ((error = adv_init_ccb(sc, ccb)) != 0) { aprint_error_dev(sc->sc_dev, "unable to initialize ccb, error = %d\n", error); return (i); } TAILQ_INSERT_TAIL(&sc->sc_free_ccb, ccb, chain); } return (i); } /* * A ccb is put onto the free list. */ static void adv_free_ccb(ASC_SOFTC *sc, ADV_CCB *ccb) { int s; s = splbio(); adv_reset_ccb(ccb); TAILQ_INSERT_HEAD(&sc->sc_free_ccb, ccb, chain); splx(s); } static void adv_reset_ccb(ADV_CCB *ccb) { ccb->flags = 0; } static int adv_init_ccb(ASC_SOFTC *sc, ADV_CCB *ccb) { int hashnum, error; callout_init(&ccb->ccb_watchdog, 0); /* * Create the DMA map for this CCB. */ error = bus_dmamap_create(sc->sc_dmat, (ASC_MAX_SG_LIST - 1) * PAGE_SIZE, ASC_MAX_SG_LIST, (ASC_MAX_SG_LIST - 1) * PAGE_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ccb->dmamap_xfer); if (error) { aprint_error_dev(sc->sc_dev, "unable to create DMA map, error = %d\n", error); return (error); } /* * put in the phystokv hash table * Never gets taken out. */ ccb->hashkey = sc->sc_dmamap_control->dm_segs[0].ds_addr + ADV_CCB_OFF(ccb); hashnum = CCB_HASH(ccb->hashkey); ccb->nexthash = sc->sc_ccbhash[hashnum]; sc->sc_ccbhash[hashnum] = ccb; adv_reset_ccb(ccb); return (0); } /* * Get a free ccb * * If there are none, see if we can allocate a new one */ static ADV_CCB * adv_get_ccb(ASC_SOFTC *sc) { ADV_CCB *ccb = 0; int s; s = splbio(); ccb = TAILQ_FIRST(&sc->sc_free_ccb); if (ccb != NULL) { TAILQ_REMOVE(&sc->sc_free_ccb, ccb, chain); ccb->flags |= CCB_ALLOC; } splx(s); return (ccb); } /* * Given a physical address, find the ccb that it corresponds to. */ ADV_CCB * adv_ccb_phys_kv(ASC_SOFTC *sc, u_long ccb_phys) { int hashnum = CCB_HASH(ccb_phys); ADV_CCB *ccb = sc->sc_ccbhash[hashnum]; while (ccb) { if (ccb->hashkey == ccb_phys) break; ccb = ccb->nexthash; } return (ccb); } /* * Queue a CCB to be sent to the controller, and send it if possible. */ static void adv_queue_ccb(ASC_SOFTC *sc, ADV_CCB *ccb) { TAILQ_INSERT_TAIL(&sc->sc_waiting_ccb, ccb, chain); adv_start_ccbs(sc); } static void adv_start_ccbs(ASC_SOFTC *sc) { ADV_CCB *ccb; while ((ccb = sc->sc_waiting_ccb.tqh_first) != NULL) { if (ccb->flags & CCB_WATCHDOG) callout_stop(&ccb->ccb_watchdog); if (AscExeScsiQueue(sc, &ccb->scsiq) == ASC_BUSY) { ccb->flags |= CCB_WATCHDOG; callout_reset(&ccb->ccb_watchdog, (ADV_WATCH_TIMEOUT * hz) / 1000, adv_watchdog, ccb); break; } TAILQ_REMOVE(&sc->sc_waiting_ccb, ccb, chain); if ((ccb->xs->xs_control & XS_CTL_POLL) == 0) callout_reset(&ccb->xs->xs_callout, mstohz(ccb->timeout), adv_timeout, ccb); } } /******************************************************************************/ /* SCSI layer interfacing routines */ /******************************************************************************/ int adv_init(ASC_SOFTC *sc) { int warn; if (!AscFindSignature(sc->sc_iot, sc->sc_ioh)) { aprint_error("adv_init: failed to find signature\n"); return (1); } /* * Read the board configuration */ AscInitASC_SOFTC(sc); warn = AscInitFromEEP(sc); if (warn) { aprint_error_dev(sc->sc_dev, "-get: "); switch (warn) { case -1: aprint_normal("Chip is not halted\n"); break; case -2: aprint_normal("Couldn't get MicroCode Start" " address\n"); break; case ASC_WARN_IO_PORT_ROTATE: aprint_normal("I/O port address modified\n"); break; case ASC_WARN_AUTO_CONFIG: aprint_normal("I/O port increment switch enabled\n"); break; case ASC_WARN_EEPROM_CHKSUM: aprint_normal("EEPROM checksum error\n"); break; case ASC_WARN_IRQ_MODIFIED: aprint_normal("IRQ modified\n"); break; case ASC_WARN_CMD_QNG_CONFLICT: aprint_normal("tag queuing enabled w/o disconnects\n"); break; default: aprint_normal("unknown warning %d\n", warn); } } if (sc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT) sc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT; /* * Modify the board configuration */ warn = AscInitFromASC_SOFTC(sc); if (warn) { aprint_error_dev(sc->sc_dev, "-set: "); switch (warn) { case ASC_WARN_CMD_QNG_CONFLICT: aprint_normal("tag queuing enabled w/o disconnects\n"); break; case ASC_WARN_AUTO_CONFIG: aprint_normal("I/O port increment switch enabled\n"); break; default: aprint_normal("unknown warning %d\n", warn); } } sc->isr_callback = (ASC_CALLBACK) adv_narrow_isr_callback; return (0); } void adv_attach(ASC_SOFTC *sc) { struct scsipi_adapter *adapt = &sc->sc_adapter; struct scsipi_channel *chan = &sc->sc_channel; int i, error; /* * Initialize board RISC chip and enable interrupts. */ switch (AscInitDriver(sc)) { case 0: /* AllOK */ break; case 1: panic("%s: bad signature", device_xname(sc->sc_dev)); break; case 2: panic("%s: unable to load MicroCode", device_xname(sc->sc_dev)); break; case 3: panic("%s: unable to initialize MicroCode", device_xname(sc->sc_dev)); break; default: panic("%s: unable to initialize board RISC chip", device_xname(sc->sc_dev)); } /* * Fill in the scsipi_adapter. */ memset(adapt, 0, sizeof(*adapt)); adapt->adapt_dev = sc->sc_dev; adapt->adapt_nchannels = 1; /* adapt_openings initialized below */ /* adapt_max_periph initialized below */ adapt->adapt_request = adv_scsipi_request; adapt->adapt_minphys = advminphys; /* * Fill in the scsipi_channel. */ memset(chan, 0, sizeof(*chan)); chan->chan_adapter = adapt; chan->chan_bustype = &scsi_bustype; chan->chan_channel = 0; chan->chan_ntargets = 8; chan->chan_nluns = 8; chan->chan_id = sc->chip_scsi_id; TAILQ_INIT(&sc->sc_free_ccb); TAILQ_INIT(&sc->sc_waiting_ccb); /* * Allocate the Control Blocks and the overrun buffer. */ error = adv_alloc_control_data(sc); if (error) return; /* (error) */ /* * Create and initialize the Control Blocks. */ i = adv_create_ccbs(sc, sc->sc_control->ccbs, ADV_MAX_CCB); if (i == 0) { aprint_error_dev(sc->sc_dev, "unable to create control blocks\n"); return; /* (ENOMEM) */ ; } else if (i != ADV_MAX_CCB) { aprint_error_dev(sc->sc_dev, "WARNING: only %d of %d control blocks created\n", i, ADV_MAX_CCB); } adapt->adapt_openings = i; adapt->adapt_max_periph = adapt->adapt_openings; sc->sc_child = config_found(sc->sc_dev, chan, scsiprint); } int adv_detach(ASC_SOFTC *sc, int flags) { int rv = 0; if (sc->sc_child != NULL) rv = config_detach(sc->sc_child, flags); adv_free_control_data(sc); return (rv); } static void advminphys(struct buf *bp) { if (bp->b_bcount > ((ASC_MAX_SG_LIST - 1) * PAGE_SIZE)) bp->b_bcount = ((ASC_MAX_SG_LIST - 1) * PAGE_SIZE); minphys(bp); } /* * start a scsi operation given the command and the data address. Also needs * the unit, target and lu. */ static void adv_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req, void *arg) { struct scsipi_xfer *xs; struct scsipi_periph *periph; ASC_SOFTC *sc = device_private(chan->chan_adapter->adapt_dev); bus_dma_tag_t dmat = sc->sc_dmat; ADV_CCB *ccb; int s, flags, error, nsegs; switch (req) { case ADAPTER_REQ_RUN_XFER: xs = arg; periph = xs->xs_periph; flags = xs->xs_control; /* * Get a CCB to use. */ ccb = adv_get_ccb(sc); #ifdef DIAGNOSTIC /* * This should never happen as we track the resources * in the mid-layer. */ if (ccb == NULL) { scsipi_printaddr(periph); printf("unable to allocate ccb\n"); panic("adv_scsipi_request"); } #endif ccb->xs = xs; ccb->timeout = xs->timeout; /* * Build up the request */ memset(&ccb->scsiq, 0, sizeof(ASC_SCSI_Q)); ccb->scsiq.q2.ccb_ptr = sc->sc_dmamap_control->dm_segs[0].ds_addr + ADV_CCB_OFF(ccb); ccb->scsiq.cdbptr = &xs->cmd->opcode; ccb->scsiq.q2.cdb_len = xs->cmdlen; ccb->scsiq.q1.target_id = ASC_TID_TO_TARGET_ID(periph->periph_target); ccb->scsiq.q1.target_lun = periph->periph_lun; ccb->scsiq.q2.target_ix = ASC_TIDLUN_TO_IX(periph->periph_target, periph->periph_lun); ccb->scsiq.q1.sense_addr = sc->sc_dmamap_control->dm_segs[0].ds_addr + ADV_CCB_OFF(ccb) + offsetof(struct adv_ccb, scsi_sense); ccb->scsiq.q1.sense_len = sizeof(struct scsi_sense_data); /* * If there are any outstanding requests for the current * target, then every 255th request send an ORDERED request. * This heuristic tries to retain the benefit of request * sorting while preventing request starvation. 255 is the * max number of tags or pending commands a device may have * outstanding. */ sc->reqcnt[periph->periph_target]++; if (((sc->reqcnt[periph->periph_target] > 0) && (sc->reqcnt[periph->periph_target] % 255) == 0) || xs->bp == NULL || (xs->bp->b_flags & B_ASYNC) == 0) { ccb->scsiq.q2.tag_code = M2_QTAG_MSG_ORDERED; } else { ccb->scsiq.q2.tag_code = M2_QTAG_MSG_SIMPLE; } if (xs->datalen) { /* * Map the DMA transfer. */ #ifdef TFS if (flags & SCSI_DATA_UIO) { error = bus_dmamap_load_uio(dmat, ccb->dmamap_xfer, (struct uio *) xs->data, ((flags & XS_CTL_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK) | BUS_DMA_STREAMING | ((flags & XS_CTL_DATA_IN) ? BUS_DMA_READ : BUS_DMA_WRITE)); } else #endif /* TFS */ { error = bus_dmamap_load(dmat, ccb->dmamap_xfer, xs->data, xs->datalen, NULL, ((flags & XS_CTL_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK) | BUS_DMA_STREAMING | ((flags & XS_CTL_DATA_IN) ? BUS_DMA_READ : BUS_DMA_WRITE)); } switch (error) { case 0: break; case ENOMEM: case EAGAIN: xs->error = XS_RESOURCE_SHORTAGE; goto out_bad; default: xs->error = XS_DRIVER_STUFFUP; if (error == EFBIG) { aprint_error_dev(sc->sc_dev, "adv_scsi_cmd, more than %d" " DMA segments\n", ASC_MAX_SG_LIST); } else { aprint_error_dev(sc->sc_dev, "adv_scsi_cmd, error %d" " loading DMA map\n", error); } out_bad: adv_free_ccb(sc, ccb); scsipi_done(xs); return; } bus_dmamap_sync(dmat, ccb->dmamap_xfer, 0, ccb->dmamap_xfer->dm_mapsize, (flags & XS_CTL_DATA_IN) ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE); memset(&ccb->sghead, 0, sizeof(ASC_SG_HEAD)); for (nsegs = 0; nsegs < ccb->dmamap_xfer->dm_nsegs; nsegs++) { ccb->sghead.sg_list[nsegs].addr = ccb->dmamap_xfer->dm_segs[nsegs].ds_addr; ccb->sghead.sg_list[nsegs].bytes = ccb->dmamap_xfer->dm_segs[nsegs].ds_len; } ccb->sghead.entry_cnt = ccb->scsiq.q1.sg_queue_cnt = ccb->dmamap_xfer->dm_nsegs; ccb->scsiq.q1.cntl |= ASC_QC_SG_HEAD; ccb->scsiq.sg_head = &ccb->sghead; ccb->scsiq.q1.data_addr = 0; ccb->scsiq.q1.data_cnt = 0; } else { /* * No data xfer, use non S/G values. */ ccb->scsiq.q1.data_addr = 0; ccb->scsiq.q1.data_cnt = 0; } #ifdef ASC_DEBUG printf("id = %d, lun = %d, cmd = %d, ccb = 0x%lX\n", periph->periph_target, periph->periph_lun, xs->cmd->opcode, (unsigned long)ccb); #endif s = splbio(); adv_queue_ccb(sc, ccb); splx(s); if ((flags & XS_CTL_POLL) == 0) return; /* Not allowed to use interrupts, poll for completion. */ if (adv_poll(sc, xs, ccb->timeout)) { adv_timeout(ccb); if (adv_poll(sc, xs, ccb->timeout)) adv_timeout(ccb); } return; case ADAPTER_REQ_GROW_RESOURCES: /* XXX Not supported. */ return; case ADAPTER_REQ_SET_XFER_MODE: { /* * We can't really set the mode, but we know how to * query what the firmware negotiated. */ struct scsipi_xfer_mode *xm = arg; u_int8_t sdtr_data; ASC_SCSI_BIT_ID_TYPE tid_bit; tid_bit = ASC_TIX_TO_TARGET_ID(xm->xm_target); xm->xm_mode = 0; xm->xm_period = 0; xm->xm_offset = 0; if (sc->init_sdtr & tid_bit) { xm->xm_mode |= PERIPH_CAP_SYNC; sdtr_data = sc->sdtr_data[xm->xm_target]; xm->xm_period = sc->sdtr_period_tbl[(sdtr_data >> 4) & (sc->max_sdtr_index - 1)]; xm->xm_offset = sdtr_data & ASC_SYN_MAX_OFFSET; } if (sc->use_tagged_qng & tid_bit) xm->xm_mode |= PERIPH_CAP_TQING; scsipi_async_event(chan, ASYNC_EVENT_XFER_MODE, xm); return; } } } int adv_intr(void *arg) { ASC_SOFTC *sc = arg; #ifdef ASC_DEBUG int int_pend = FALSE; if (ASC_IS_INT_PENDING(sc->sc_iot, sc->sc_ioh)) { int_pend = TRUE; printf("ISR - "); } #endif AscISR(sc); #ifdef ASC_DEBUG if(int_pend) printf("\n"); #endif return (1); } /* * Poll a particular unit, looking for a particular xs */ static int adv_poll(ASC_SOFTC *sc, struct scsipi_xfer *xs, int count) { /* timeouts are in msec, so we loop in 1000 usec cycles */ while (count) { adv_intr(sc); if (xs->xs_status & XS_STS_DONE) return (0); delay(1000); /* only happens in boot so ok */ count--; } return (1); } static void adv_timeout(void *arg) { ADV_CCB *ccb = arg; struct scsipi_xfer *xs = ccb->xs; struct scsipi_periph *periph = xs->xs_periph; ASC_SOFTC *sc = device_private(periph->periph_channel->chan_adapter->adapt_dev); int s; scsipi_printaddr(periph); printf("timed out"); s = splbio(); /* * If it has been through before, then a previous abort has failed, * don't try abort again, reset the bus instead. */ if (ccb->flags & CCB_ABORT) { /* abort timed out */ printf(" AGAIN. Resetting Bus\n"); /* Lets try resetting the bus! */ if (AscResetBus(sc) == ASC_ERROR) { ccb->timeout = sc->scsi_reset_wait; adv_queue_ccb(sc, ccb); } } else { /* abort the operation that has timed out */ printf("\n"); AscAbortCCB(sc, ccb); ccb->xs->error = XS_TIMEOUT; ccb->timeout = ADV_ABORT_TIMEOUT; ccb->flags |= CCB_ABORT; adv_queue_ccb(sc, ccb); } splx(s); } static void adv_watchdog(void *arg) { ADV_CCB *ccb = arg; struct scsipi_xfer *xs = ccb->xs; struct scsipi_periph *periph = xs->xs_periph; ASC_SOFTC *sc = device_private(periph->periph_channel->chan_adapter->adapt_dev); int s; s = splbio(); ccb->flags &= ~CCB_WATCHDOG; adv_start_ccbs(sc); splx(s); } /******************************************************************************/ /* NARROW boards Interrupt callbacks */ /******************************************************************************/ /* * adv_narrow_isr_callback() - Second Level Interrupt Handler called by AscISR() * * Interrupt callback function for the Narrow SCSI Asc Library. */ static void adv_narrow_isr_callback(ASC_SOFTC *sc, ASC_QDONE_INFO *qdonep) { bus_dma_tag_t dmat = sc->sc_dmat; ADV_CCB *ccb; struct scsipi_xfer *xs; struct scsi_sense_data *s1, *s2; ccb = adv_ccb_phys_kv(sc, qdonep->d2.ccb_ptr); xs = ccb->xs; #ifdef ASC_DEBUG printf(" - ccb=0x%lx, id=%d, lun=%d, cmd=%d, ", (unsigned long)ccb, xs->xs_periph->periph_target, xs->xs_periph->periph_lun, xs->cmd->opcode); #endif callout_stop(&ccb->xs->xs_callout); /* * If we were a data transfer, unload the map that described * the data buffer. */ if (xs->datalen) { bus_dmamap_sync(dmat, ccb->dmamap_xfer, 0, ccb->dmamap_xfer->dm_mapsize, (xs->xs_control & XS_CTL_DATA_IN) ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(dmat, ccb->dmamap_xfer); } if ((ccb->flags & CCB_ALLOC) == 0) { aprint_error_dev(sc->sc_dev, "exiting ccb not allocated!\n"); Debugger(); return; } /* * 'qdonep' contains the command's ending status. */ #ifdef ASC_DEBUG printf("d_s=%d, h_s=%d", qdonep->d3.done_stat, qdonep->d3.host_stat); #endif switch (qdonep->d3.done_stat) { case ASC_QD_NO_ERROR: switch (qdonep->d3.host_stat) { case ASC_QHSTA_NO_ERROR: xs->error = XS_NOERROR; /* * XXX * According to the original Linux driver, xs->resid * should be qdonep->remain_bytes. However, its value * is bogus, which seems like a H/W bug. The best thing * we can do would be to ignore it, assuming that all * data has been successfully transferred... */ xs->resid = 0; break; default: /* QHSTA error occurred */ xs->error = XS_DRIVER_STUFFUP; break; } /* * If an INQUIRY command completed successfully, then call * the AscInquiryHandling() function to patch bugged boards. */ if ((xs->cmd->opcode == SCSICMD_Inquiry) && (xs->xs_periph->periph_lun == 0) && (xs->datalen - qdonep->remain_bytes) >= 8) { AscInquiryHandling(sc, xs->xs_periph->periph_target & 0x7, (ASC_SCSI_INQUIRY *) xs->data); } break; case ASC_QD_WITH_ERROR: switch (qdonep->d3.host_stat) { case ASC_QHSTA_NO_ERROR: if (qdonep->d3.scsi_stat == SS_CHK_CONDITION) { s1 = &ccb->scsi_sense; s2 = &xs->sense.scsi_sense; *s2 = *s1; xs->error = XS_SENSE; } else { xs->error = XS_DRIVER_STUFFUP; } break; case ASC_QHSTA_M_SEL_TIMEOUT: xs->error = XS_SELTIMEOUT; break; default: /* QHSTA error occurred */ xs->error = XS_DRIVER_STUFFUP; break; } break; case ASC_QD_ABORTED_BY_HOST: default: xs->error = XS_DRIVER_STUFFUP; break; } adv_free_ccb(sc, ccb); scsipi_done(xs); }