/* $NetBSD: daemon.c,v 1.3 2021/08/14 16:14:58 christos Exp $ */
/* $OpenLDAP$ */
/* This work is part of OpenLDAP Software .
*
* Copyright 1998-2021 The OpenLDAP Foundation.
* Portions Copyright 2007 by Howard Chu, Symas Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted only as authorized by the OpenLDAP
* Public License.
*
* A copy of this license is available in the file LICENSE in the
* top-level directory of the distribution or, alternatively, at
* .
*/
/* Portions Copyright (c) 1995 Regents of the University of Michigan.
* All rights reserved.
*
* Redistribution and use in source and binary forms are permitted
* provided that this notice is preserved and that due credit is given
* to the University of Michigan at Ann Arbor. The name of the University
* may not be used to endorse or promote products derived from this
* software without specific prior written permission. This software
* is provided ``as is'' without express or implied warranty.
*/
#include
__RCSID("$NetBSD: daemon.c,v 1.3 2021/08/14 16:14:58 christos Exp $");
#include "portable.h"
#include
#include
#include
#include
#include
#include
#include
#include "slap.h"
#include "ldap_pvt_thread.h"
#include "lutil.h"
#include "ldap_rq.h"
#ifdef HAVE_SYSTEMD_SD_DAEMON_H
#include
#endif
#ifdef HAVE_POLL
#include
#endif
#ifdef HAVE_KQUEUE
# include
# include
# include
#elif defined(HAVE_SYS_EPOLL_H) && defined(HAVE_EPOLL)
# include
#elif defined(SLAP_X_DEVPOLL) && defined(HAVE_SYS_DEVPOLL_H) && defined(HAVE_DEVPOLL)
# include
# include
# include
# include
#endif /* ! kqueue && ! epoll && ! /dev/poll */
#ifdef HAVE_TCPD
int allow_severity = LOG_INFO;
int deny_severity = LOG_NOTICE;
#endif /* TCP Wrappers */
#ifdef LDAP_PF_LOCAL
# include
/* this should go in as soon as it is accepted */
# define LDAPI_MOD_URLEXT "x-mod"
#endif /* LDAP_PF_LOCAL */
#ifdef LDAP_PF_INET6
int slap_inet4or6 = AF_UNSPEC;
#else /* ! INETv6 */
int slap_inet4or6 = AF_INET;
#endif /* ! INETv6 */
/* globals */
time_t starttime;
ber_socket_t dtblsize;
slap_ssf_t local_ssf = LDAP_PVT_SASL_LOCAL_SSF;
struct runqueue_s slapd_rq;
int slapd_daemon_threads = 1;
int slapd_daemon_mask;
#ifdef LDAP_TCP_BUFFER
int slapd_tcp_rmem;
int slapd_tcp_wmem;
#endif /* LDAP_TCP_BUFFER */
Listener **slap_listeners = NULL;
static volatile sig_atomic_t listening = 1; /* 0 when slap_listeners closed */
#ifndef SLAPD_LISTEN_BACKLOG
#define SLAPD_LISTEN_BACKLOG 2048
#endif /* ! SLAPD_LISTEN_BACKLOG */
#define DAEMON_ID(fd) (fd & slapd_daemon_mask)
typedef ber_socket_t sdpair[2];
static sdpair *wake_sds;
static ldap_pvt_thread_mutex_t emfile_mutex;
static int emfile;
static volatile int waking;
#define WAKE_LISTENER(l,w) do { \
if (w) { \
(void)!tcp_write( SLAP_FD2SOCK(wake_sds[l][1]), "0", 1 ); \
} \
} while (0)
ldap_pvt_thread_mutex_t slapd_init_mutex;
ldap_pvt_thread_cond_t slapd_init_cond;
int slapd_ready = 0;
volatile sig_atomic_t slapd_shutdown = 0;
volatile sig_atomic_t slapd_gentle_shutdown = 0;
volatile sig_atomic_t slapd_abrupt_shutdown = 0;
#ifdef HAVE_WINSOCK
ldap_pvt_thread_mutex_t slapd_ws_mutex;
SOCKET *slapd_ws_sockets;
#define SD_READ 1
#define SD_WRITE 2
#define SD_ACTIVE 4
#define SD_LISTENER 8
#endif
#ifdef HAVE_TCPD
static ldap_pvt_thread_mutex_t sd_tcpd_mutex;
#endif /* TCP Wrappers */
typedef struct slap_daemon_st {
ldap_pvt_thread_mutex_t sd_mutex;
ber_socket_t sd_nactives;
int sd_nwriters;
int sd_nfds;
ldap_pvt_thread_t sd_tid;
#if defined(HAVE_KQUEUE)
uint8_t* sd_fdmodes; /* indexed by fd */
Listener** sd_l; /* indexed by fd */
/* Double buffer the kqueue changes to avoid holding the sd_mutex \
* during a kevent() call. \
*/
struct kq_change {
struct kevent* sd_changes;
int sd_nchanges;
int sd_maxchanges;
} sd_kqc[2];
int sd_changeidx; /* index to current change buffer */
int sd_kq;
#elif defined(HAVE_EPOLL)
struct epoll_event *sd_epolls;
int *sd_index;
int sd_epfd;
#elif defined(SLAP_X_DEVPOLL) && defined(HAVE_DEVPOLL)
/* eXperimental */
struct pollfd *sd_pollfd;
int *sd_index;
Listener **sd_l;
int sd_dpfd;
#else /* ! kqueue && ! epoll && ! /dev/poll */
#ifdef HAVE_WINSOCK
char *sd_flags;
char *sd_rflags;
#else /* ! HAVE_WINSOCK */
fd_set sd_actives;
fd_set sd_readers;
fd_set sd_writers;
#endif /* ! HAVE_WINSOCK */
#endif /* ! kqueue && ! epoll && ! /dev/poll */
} slap_daemon_st;
static slap_daemon_st *slap_daemon;
/*
* NOTE: naming convention for macros:
*
* - SLAP_SOCK_* and SLAP_EVENT_* for public interface that deals
* with file descriptors and events respectively
*
* - SLAP__* for private interface; type by now is one of
* EPOLL, DEVPOLL, SELECT, KQUEUE
*
* private interface should not be used in the code.
*/
#ifdef HAVE_KQUEUE
# define SLAP_EVENT_FNAME "kqueue"
# define SLAP_EVENTS_ARE_INDEXED 0
# define SLAP_EVENT_MAX(t) (2 * dtblsize) /* each fd can have a read & a write event */
# define SLAP_EVENT_DECL \
static struct kevent* events = NULL
# define SLAP_EVENT_INIT(t) do {\
if (!events) { \
events = ch_malloc(sizeof(*events) * SLAP_EVENT_MAX(t)); \
} \
} while (0)
# define SLAP_SOCK_INIT(t) do { \
int kq_i; \
size_t kq_nbytes; \
Debug(LDAP_DEBUG_ANY, "daemon: SLAP_SOCK_INIT: dtblsize=%d\n", dtblsize); \
slap_daemon[t].sd_nfds = 0; \
slap_daemon[t].sd_changeidx = 0; \
for (kq_i = 0; kq_i < 2; kq_i++) { \
struct kq_change* kqc = &slap_daemon[t].sd_kqc[kq_i]; \
kqc->sd_nchanges = 0; \
kqc->sd_maxchanges = 256; /* will grow as needed */ \
kq_nbytes = sizeof(*kqc->sd_changes) * kqc->sd_maxchanges; \
kqc->sd_changes = ch_calloc(1, kq_nbytes); \
} \
kq_nbytes = sizeof(*slap_daemon[t].sd_fdmodes) * dtblsize; \
slap_daemon[t].sd_fdmodes = ch_calloc(1, kq_nbytes); \
kq_nbytes = sizeof(*slap_daemon[t].sd_l) * dtblsize; \
slap_daemon[t].sd_l = ch_calloc(1, kq_nbytes); \
slap_daemon[t].sd_kq = kqueue(); \
} while (0)
/* a kqueue fd obtained before a fork can't be used in child process.
* close it and reacquire it.
*/
# define SLAP_SOCK_INIT2() do { \
close(slap_daemon[0].sd_kq); \
slap_daemon[0].sd_kq = kqueue(); \
} while (0)
# define SLAP_SOCK_DESTROY(t) do { \
int kq_i; \
if (slap_daemon[t].sd_kq > 0) { \
close(slap_daemon[t].sd_kq); \
slap_daemon[t].sd_kq = -1; \
} \
for (kq_i = 0; kq_i < 2; kq_i++) { \
if (slap_daemon[t].sd_kqc[kq_i].sd_changes != NULL) { \
ch_free(slap_daemon[t].sd_kqc[kq_i].sd_changes); \
slap_daemon[t].sd_kqc[kq_i].sd_changes = NULL; \
} \
slap_daemon[t].sd_kqc[kq_i].sd_nchanges = 0; \
slap_daemon[t].sd_kqc[kq_i].sd_maxchanges = 0; \
} \
if (slap_daemon[t].sd_l != NULL) { \
ch_free(slap_daemon[t].sd_l); \
slap_daemon[t].sd_l = NULL; \
} \
if (slap_daemon[t].sd_fdmodes != NULL) { \
ch_free(slap_daemon[t].sd_fdmodes); \
slap_daemon[t].sd_fdmodes = NULL; \
} \
slap_daemon[t].sd_nfds = 0; \
} while (0)
# define SLAP_KQUEUE_SOCK_ACTIVE 0x01
# define SLAP_KQUEUE_SOCK_READ_ENABLED 0x02
# define SLAP_KQUEUE_SOCK_WRITE_ENABLED 0x04
# define SLAP_SOCK_IS_ACTIVE(t,s) (slap_daemon[t].sd_fdmodes[(s)] != 0)
# define SLAP_SOCK_NOT_ACTIVE(t,s) (slap_daemon[t].sd_fdmodes[(s)] == 0)
# define SLAP_SOCK_IS_READ(t,s) (slap_daemon[t].sd_fdmodes[(s)] & SLAP_KQUEUE_SOCK_READ_ENABLED)
# define SLAP_SOCK_IS_WRITE(t,s) (slap_daemon[t].sd_fdmodes[(s)] & SLAP_KQUEUE_SOCK_WRITE_ENABLED)
/*
* SLAP_SOCK_SET_* & SLAP_SOCK_CLR_* get called a _lot_. Since kevent()
* processes changes before it looks for events, batch up the changes which
* will get submitted the next time kevent() is called for events.
*/
# define SLAP_KQUEUE_CHANGE(t, s, filter, flag) do { \
/* If maxchanges is reached, have to realloc to make room for more. \
* Ideally we'd call kevent(), but the daemon thread could be sitting \
* in kevent() waiting for events. \
*/ \
struct kq_change* kqc = &slap_daemon[t].sd_kqc[slap_daemon[t].sd_changeidx]; \
if (kqc->sd_nchanges == kqc->sd_maxchanges) { \
/* Don't want to do this very often. Double the size. */ \
size_t kq_nbytes; \
Debug(LDAP_DEBUG_CONNS, \
"daemon: SLAP_KQUEUE_CHANGE: increasing slap_daemon.sd_kqc[%d].maxchanges from %d to %d\n", \
slap_daemon[t].sd_changeidx, kqc->sd_maxchanges, 2*kqc->sd_maxchanges); \
kqc->sd_maxchanges += kqc->sd_maxchanges; \
kq_nbytes = sizeof(*kqc->sd_changes) * kqc->sd_maxchanges; \
kqc->sd_changes = ch_realloc(kqc->sd_changes, kq_nbytes); \
} \
EV_SET(&kqc->sd_changes[kqc->sd_nchanges++], \
(s), (filter), (flag), 0, 0, slap_daemon[t].sd_l[(s)]); \
} while (0)
# define SLAP_KQUEUE_SOCK_SET(t, s, filter, mode) do { \
if ((slap_daemon[t].sd_fdmodes[(s)] & (mode)) != (mode)) { \
slap_daemon[t].sd_fdmodes[(s)] |= (mode); \
SLAP_KQUEUE_CHANGE(t, (s), (filter), EV_ENABLE); \
} \
} while (0)
# define SLAP_KQUEUE_SOCK_CLR(t, s, filter, mode) do { \
if (slap_daemon[t].sd_fdmodes[(s)] & (mode)) { \
slap_daemon[t].sd_fdmodes[(s)] &= ~(mode); \
SLAP_KQUEUE_CHANGE(t, (s), (filter), EV_DISABLE); \
} \
} while (0)
# define SLAP_SOCK_SET_READ(t, s) SLAP_KQUEUE_SOCK_SET(t, (s), EVFILT_READ, SLAP_KQUEUE_SOCK_READ_ENABLED)
# define SLAP_SOCK_SET_WRITE(t, s) SLAP_KQUEUE_SOCK_SET(t, (s), EVFILT_WRITE, SLAP_KQUEUE_SOCK_WRITE_ENABLED)
# define SLAP_SOCK_CLR_READ(t, s) SLAP_KQUEUE_SOCK_CLR(t, (s), EVFILT_READ, SLAP_KQUEUE_SOCK_READ_ENABLED)
# define SLAP_SOCK_CLR_WRITE(t, s) SLAP_KQUEUE_SOCK_CLR(t, (s), EVFILT_WRITE, SLAP_KQUEUE_SOCK_WRITE_ENABLED)
/* kqueue doesn't need to do anything to clear the event. */
# define SLAP_EVENT_CLR_READ(i) do {} while (0)
# define SLAP_EVENT_CLR_WRITE(i) do {} while (0)
# define SLAP_SOCK_ADD(t, s, l) do { \
assert( s < dtblsize ); \
slap_daemon[t].sd_l[(s)] = (l); \
slap_daemon[t].sd_fdmodes[(s)] = SLAP_KQUEUE_SOCK_ACTIVE | SLAP_KQUEUE_SOCK_READ_ENABLED; \
++slap_daemon[t].sd_nfds; \
SLAP_KQUEUE_CHANGE(t, (s), EVFILT_READ, EV_ADD); \
SLAP_KQUEUE_CHANGE(t, (s), EVFILT_WRITE, EV_ADD | EV_DISABLE); \
} while (0)
# define SLAP_SOCK_DEL(t, s) do { \
SLAP_KQUEUE_CHANGE(t, (s), EVFILT_READ, EV_DELETE); \
SLAP_KQUEUE_CHANGE(t, (s), EVFILT_WRITE, EV_DELETE); \
slap_daemon[t].sd_l[(s)] = NULL; \
slap_daemon[t].sd_fdmodes[(s)] = 0; \
--slap_daemon[t].sd_nfds; \
} while (0)
# define SLAP_EVENT_FD(t, i) (events[(i)].ident)
# define SLAP_EVENT_IS_READ(t, i) \
(events[(i)].filter == EVFILT_READ && SLAP_SOCK_IS_READ(t, SLAP_EVENT_FD(0, i)))
# define SLAP_EVENT_IS_WRITE(t, i) \
(events[(i)].filter == EVFILT_WRITE && SLAP_SOCK_IS_WRITE(t, SLAP_EVENT_FD(0, i)))
# define SLAP_EVENT_IS_LISTENER(t, i) \
(events[(i)].udata && SLAP_SOCK_IS_READ(t, SLAP_EVENT_FD(t, i)))
# define SLAP_EVENT_LISTENER(t, i) ((Listener*)(events[(i)].udata))
# define SLAP_EVENT_WAIT(t, tvp, nsp) do { \
struct timespec kq_ts; \
struct timespec* kq_tsp; \
int kq_idx; \
if (tvp) { \
TIMEVAL_TO_TIMESPEC((tvp), &kq_ts); \
kq_tsp = &kq_ts; \
} else { \
kq_tsp = NULL; \
} \
/* Save the change buffer index for use when the mutex is unlocked, \
* then switch the index so new changes go to the other buffer. \
*/ \
ldap_pvt_thread_mutex_lock( &slap_daemon[t].sd_mutex ); \
kq_idx = slap_daemon[t].sd_changeidx; \
slap_daemon[t].sd_changeidx ^= 1; \
ldap_pvt_thread_mutex_unlock( &slap_daemon[t].sd_mutex ); \
*(nsp) = kevent(slap_daemon[t].sd_kq, \
slap_daemon[t].sd_kqc[kq_idx].sd_nchanges \
? slap_daemon[t].sd_kqc[kq_idx].sd_changes : NULL, \
slap_daemon[t].sd_kqc[kq_idx].sd_nchanges, \
events, SLAP_EVENT_MAX(t), kq_tsp); \
slap_daemon[t].sd_kqc[kq_idx].sd_nchanges = 0; \
} while(0)
/*-------------------------------------------------------------------------------*/
#elif defined(HAVE_EPOLL)
/***************************************
* Use epoll infrastructure - epoll(4) *
***************************************/
# define SLAP_EVENT_FNAME "epoll"
# define SLAP_EVENTS_ARE_INDEXED 0
# define SLAP_EPOLL_SOCK_IX(t,s) (slap_daemon[t].sd_index[(s)])
# define SLAP_EPOLL_SOCK_EP(t,s) (slap_daemon[t].sd_epolls[SLAP_EPOLL_SOCK_IX(t,s)])
# define SLAP_EPOLL_SOCK_EV(t,s) (SLAP_EPOLL_SOCK_EP(t,s).events)
# define SLAP_SOCK_IS_ACTIVE(t,s) (SLAP_EPOLL_SOCK_IX(t,s) != -1)
# define SLAP_SOCK_NOT_ACTIVE(t,s) (SLAP_EPOLL_SOCK_IX(t,s) == -1)
# define SLAP_EPOLL_SOCK_IS_SET(t,s, mode) (SLAP_EPOLL_SOCK_EV(t,s) & (mode))
# define SLAP_SOCK_IS_READ(t,s) SLAP_EPOLL_SOCK_IS_SET(t,(s), EPOLLIN)
# define SLAP_SOCK_IS_WRITE(t,s) SLAP_EPOLL_SOCK_IS_SET(t,(s), EPOLLOUT)
# define SLAP_EPOLL_SOCK_SET(t,s, mode) do { \
if ( (SLAP_EPOLL_SOCK_EV(t,s) & (mode)) != (mode) ) { \
SLAP_EPOLL_SOCK_EV(t,s) |= (mode); \
epoll_ctl( slap_daemon[t].sd_epfd, EPOLL_CTL_MOD, (s), \
&SLAP_EPOLL_SOCK_EP(t,s) ); \
} \
} while (0)
# define SLAP_EPOLL_SOCK_CLR(t,s, mode) do { \
if ( (SLAP_EPOLL_SOCK_EV(t,s) & (mode)) ) { \
SLAP_EPOLL_SOCK_EV(t,s) &= ~(mode); \
epoll_ctl( slap_daemon[t].sd_epfd, EPOLL_CTL_MOD, s, \
&SLAP_EPOLL_SOCK_EP(t,s) ); \
} \
} while (0)
# define SLAP_SOCK_SET_READ(t,s) SLAP_EPOLL_SOCK_SET(t,s, EPOLLIN)
# define SLAP_SOCK_SET_WRITE(t,s) SLAP_EPOLL_SOCK_SET(t,s, EPOLLOUT)
# define SLAP_SOCK_CLR_READ(t,s) SLAP_EPOLL_SOCK_CLR(t,(s), EPOLLIN)
# define SLAP_SOCK_CLR_WRITE(t,s) SLAP_EPOLL_SOCK_CLR(t,(s), EPOLLOUT)
# define SLAP_SOCK_SET_SUSPEND(t,s) \
( slap_daemon[t].sd_suspend[SLAP_EPOLL_SOCK_IX(t,s)] = 1 )
# define SLAP_SOCK_CLR_SUSPEND(t,s) \
( slap_daemon[t].sd_suspend[SLAP_EPOLL_SOCK_IX(t,s)] = 0 )
# define SLAP_SOCK_IS_SUSPEND(t,s) \
( slap_daemon[t].sd_suspend[SLAP_EPOLL_SOCK_IX(t,s)] == 1 )
# define SLAP_EPOLL_EVENT_CLR(i, mode) (revents[(i)].events &= ~(mode))
# define SLAP_EVENT_MAX(t) slap_daemon[t].sd_nfds
/* If a Listener address is provided, store that as the epoll data.
* Otherwise, store the address of this socket's slot in the
* index array. If we can't do this add, the system is out of
* resources and we need to shutdown.
*/
# define SLAP_SOCK_ADD(t, s, l) do { \
int rc; \
SLAP_EPOLL_SOCK_IX(t,(s)) = slap_daemon[t].sd_nfds; \
SLAP_EPOLL_SOCK_EP(t,(s)).data.ptr = (l) ? (l) : (void *)(&SLAP_EPOLL_SOCK_IX(t,s)); \
SLAP_EPOLL_SOCK_EV(t,(s)) = EPOLLIN; \
rc = epoll_ctl(slap_daemon[t].sd_epfd, EPOLL_CTL_ADD, \
(s), &SLAP_EPOLL_SOCK_EP(t,(s))); \
if ( rc == 0 ) { \
slap_daemon[t].sd_nfds++; \
} else { \
int saved_errno = errno; \
Debug( LDAP_DEBUG_ANY, \
"daemon: epoll_ctl(ADD,fd=%d) failed, errno=%d, shutting down\n", \
s, saved_errno ); \
slapd_shutdown = 2; \
} \
} while (0)
# define SLAP_EPOLL_EV_LISTENER(t,ptr) \
(((int *)(ptr) >= slap_daemon[t].sd_index && \
(int *)(ptr) <= &slap_daemon[t].sd_index[dtblsize]) ? 0 : 1 )
# define SLAP_EPOLL_EV_PTRFD(t,ptr) (SLAP_EPOLL_EV_LISTENER(t,ptr) ? \
((Listener *)ptr)->sl_sd : \
(ber_socket_t) ((int *)(ptr) - slap_daemon[t].sd_index))
# define SLAP_SOCK_DEL(t,s) do { \
int fd, rc, index = SLAP_EPOLL_SOCK_IX(t,(s)); \
if ( index < 0 ) break; \
rc = epoll_ctl(slap_daemon[t].sd_epfd, EPOLL_CTL_DEL, \
(s), &SLAP_EPOLL_SOCK_EP(t,(s))); \
slap_daemon[t].sd_epolls[index] = \
slap_daemon[t].sd_epolls[slap_daemon[t].sd_nfds-1]; \
fd = SLAP_EPOLL_EV_PTRFD(t,slap_daemon[t].sd_epolls[index].data.ptr); \
slap_daemon[t].sd_index[fd] = index; \
slap_daemon[t].sd_index[(s)] = -1; \
slap_daemon[t].sd_nfds--; \
} while (0)
# define SLAP_EVENT_CLR_READ(i) SLAP_EPOLL_EVENT_CLR((i), EPOLLIN)
# define SLAP_EVENT_CLR_WRITE(i) SLAP_EPOLL_EVENT_CLR((i), EPOLLOUT)
# define SLAP_EPOLL_EVENT_CHK(i, mode) (revents[(i)].events & mode)
# define SLAP_EVENT_IS_READ(i) SLAP_EPOLL_EVENT_CHK((i), EPOLLIN)
# define SLAP_EVENT_IS_WRITE(i) SLAP_EPOLL_EVENT_CHK((i), EPOLLOUT)
# define SLAP_EVENT_IS_LISTENER(t,i) SLAP_EPOLL_EV_LISTENER(t,revents[(i)].data.ptr)
# define SLAP_EVENT_LISTENER(t,i) ((Listener *)(revents[(i)].data.ptr))
# define SLAP_EVENT_FD(t,i) SLAP_EPOLL_EV_PTRFD(t,revents[(i)].data.ptr)
# define SLAP_SOCK_INIT(t) do { \
int j; \
slap_daemon[t].sd_epolls = ch_calloc(1, \
( sizeof(struct epoll_event) * 2 \
+ sizeof(int) ) * dtblsize * 2); \
slap_daemon[t].sd_index = (int *)&slap_daemon[t].sd_epolls[ 2 * dtblsize ]; \
slap_daemon[t].sd_epfd = epoll_create( dtblsize / slapd_daemon_threads ); \
for ( j = 0; j < dtblsize; j++ ) slap_daemon[t].sd_index[j] = -1; \
} while (0)
# define SLAP_SOCK_INIT2()
# define SLAP_SOCK_DESTROY(t) do { \
if ( slap_daemon[t].sd_epolls != NULL ) { \
ch_free( slap_daemon[t].sd_epolls ); \
slap_daemon[t].sd_epolls = NULL; \
slap_daemon[t].sd_index = NULL; \
close( slap_daemon[t].sd_epfd ); \
} \
} while ( 0 )
# define SLAP_EVENT_DECL struct epoll_event *revents
# define SLAP_EVENT_INIT(t) do { \
revents = slap_daemon[t].sd_epolls + dtblsize; \
} while (0)
# define SLAP_EVENT_WAIT(t, tvp, nsp) do { \
*(nsp) = epoll_wait( slap_daemon[t].sd_epfd, revents, \
dtblsize, (tvp) ? ((tvp)->tv_sec * 1000 + (tvp)->tv_usec / 1000) : -1 ); \
} while (0)
#elif defined(SLAP_X_DEVPOLL) && defined(HAVE_DEVPOLL)
/*************************************************************
* Use Solaris' (>= 2.7) /dev/poll infrastructure - poll(7d) *
*************************************************************/
# define SLAP_EVENT_FNAME "/dev/poll"
# define SLAP_EVENTS_ARE_INDEXED 0
/*
* - sd_index is used much like with epoll()
* - sd_l is maintained as an array containing the address
* of the listener; the index is the fd itself
* - sd_pollfd is used to keep track of what data has been
* registered in /dev/poll
*/
# define SLAP_DEVPOLL_SOCK_IX(t,s) (slap_daemon[t].sd_index[(s)])
# define SLAP_DEVPOLL_SOCK_LX(t,s) (slap_daemon[t].sd_l[(s)])
# define SLAP_DEVPOLL_SOCK_EP(t,s) (slap_daemon[t].sd_pollfd[SLAP_DEVPOLL_SOCK_IX(t,(s))])
# define SLAP_DEVPOLL_SOCK_FD(t,s) (SLAP_DEVPOLL_SOCK_EP(t,(s)).fd)
# define SLAP_DEVPOLL_SOCK_EV(t,s) (SLAP_DEVPOLL_SOCK_EP(t,(s)).events)
# define SLAP_SOCK_IS_ACTIVE(t,s) (SLAP_DEVPOLL_SOCK_IX(t,(s)) != -1)
# define SLAP_SOCK_NOT_ACTIVE(t,s) (SLAP_DEVPOLL_SOCK_IX(t,(s)) == -1)
# define SLAP_SOCK_IS_SET(t,s, mode) (SLAP_DEVPOLL_SOCK_EV(t,(s)) & (mode))
# define SLAP_SOCK_IS_READ(t,s) SLAP_SOCK_IS_SET(t,(s), POLLIN)
# define SLAP_SOCK_IS_WRITE(t,s) SLAP_SOCK_IS_SET(t,(s), POLLOUT)
/* as far as I understand, any time we need to communicate with the kernel
* about the number and/or properties of a file descriptor we need it to
* wait for, we have to rewrite the whole set */
# define SLAP_DEVPOLL_WRITE_POLLFD(t,s, pfd, n, what, shdn) do { \
int rc; \
size_t size = (n) * sizeof( struct pollfd ); \
/* FIXME: use pwrite? */ \
rc = write( slap_daemon[t].sd_dpfd, (pfd), size ); \
if ( rc != size ) { \
int saved_errno = errno; \
Debug( LDAP_DEBUG_ANY, "daemon: " SLAP_EVENT_FNAME ": " \
"%s fd=%d failed errno=%d\n", \
(what), (s), saved_errno ); \
if ( (shdn) ) { \
slapd_shutdown = 2; \
} \
} \
} while (0)
# define SLAP_DEVPOLL_SOCK_SET(t,s, mode) do { \
Debug( LDAP_DEBUG_CONNS, "SLAP_SOCK_SET_%s(%d)=%d\n", \
(mode) == POLLIN ? "READ" : "WRITE", (s), \
( (SLAP_DEVPOLL_SOCK_EV(t,(s)) & (mode)) != (mode) ) ); \
if ( (SLAP_DEVPOLL_SOCK_EV(t,(s)) & (mode)) != (mode) ) { \
struct pollfd pfd; \
SLAP_DEVPOLL_SOCK_EV(t,(s)) |= (mode); \
pfd.fd = SLAP_DEVPOLL_SOCK_FD(t,(s)); \
pfd.events = /* (mode) */ SLAP_DEVPOLL_SOCK_EV(t,(s)); \
SLAP_DEVPOLL_WRITE_POLLFD(t,(s), &pfd, 1, "SET", 0); \
} \
} while (0)
# define SLAP_DEVPOLL_SOCK_CLR(t,s, mode) do { \
Debug( LDAP_DEBUG_CONNS, "SLAP_SOCK_CLR_%s(%d)=%d\n", \
(mode) == POLLIN ? "READ" : "WRITE", (s), \
( (SLAP_DEVPOLL_SOCK_EV(t,(s)) & (mode)) == (mode) ) ); \
if ((SLAP_DEVPOLL_SOCK_EV(t,(s)) & (mode)) == (mode) ) { \
struct pollfd pfd[2]; \
SLAP_DEVPOLL_SOCK_EV(t,(s)) &= ~(mode); \
pfd[0].fd = SLAP_DEVPOLL_SOCK_FD(t,(s)); \
pfd[0].events = POLLREMOVE; \
pfd[1] = SLAP_DEVPOLL_SOCK_EP(t,(s)); \
SLAP_DEVPOLL_WRITE_POLLFD(t,(s), &pfd[0], 2, "CLR", 0); \
} \
} while (0)
# define SLAP_SOCK_SET_READ(t,s) SLAP_DEVPOLL_SOCK_SET(t,s, POLLIN)
# define SLAP_SOCK_SET_WRITE(t,s) SLAP_DEVPOLL_SOCK_SET(t,s, POLLOUT)
# define SLAP_SOCK_CLR_READ(t,s) SLAP_DEVPOLL_SOCK_CLR(t,(s), POLLIN)
# define SLAP_SOCK_CLR_WRITE(t,s) SLAP_DEVPOLL_SOCK_CLR(t,(s), POLLOUT)
# define SLAP_SOCK_SET_SUSPEND(t,s) \
( slap_daemon[t].sd_suspend[SLAP_DEVPOLL_SOCK_IX(t,(s))] = 1 )
# define SLAP_SOCK_CLR_SUSPEND(t,s) \
( slap_daemon[t].sd_suspend[SLAP_DEVPOLL_SOCK_IX(t,(s))] = 0 )
# define SLAP_SOCK_IS_SUSPEND(t,s) \
( slap_daemon[t].sd_suspend[SLAP_DEVPOLL_SOCK_IX(t,(s))] == 1 )
# define SLAP_DEVPOLL_EVENT_CLR(i, mode) (revents[(i)].events &= ~(mode))
# define SLAP_EVENT_MAX(t) slap_daemon[t].sd_nfds
/* If a Listener address is provided, store that in the sd_l array.
* If we can't do this add, the system is out of resources and we
* need to shutdown.
*/
# define SLAP_SOCK_ADD(t, s, l) do { \
Debug( LDAP_DEBUG_CONNS, "SLAP_SOCK_ADD(%d, %p)\n", (s), (l) ); \
SLAP_DEVPOLL_SOCK_IX(t,(s)) = slap_daemon[t].sd_nfds; \
SLAP_DEVPOLL_SOCK_LX(t,(s)) = (l); \
SLAP_DEVPOLL_SOCK_FD(t,(s)) = (s); \
SLAP_DEVPOLL_SOCK_EV(t,(s)) = POLLIN; \
SLAP_DEVPOLL_WRITE_POLLFD(t,(s), &SLAP_DEVPOLL_SOCK_EP(t, (s)), 1, "ADD", 1); \
slap_daemon[t].sd_nfds++; \
} while (0)
# define SLAP_DEVPOLL_EV_LISTENER(ptr) ((ptr) != NULL)
# define SLAP_SOCK_DEL(t,s) do { \
int fd, index = SLAP_DEVPOLL_SOCK_IX(t,(s)); \
Debug( LDAP_DEBUG_CONNS, "SLAP_SOCK_DEL(%d)\n", (s) ); \
if ( index < 0 ) break; \
if ( index < slap_daemon[t].sd_nfds - 1 ) { \
struct pollfd pfd = slap_daemon[t].sd_pollfd[index]; \
fd = slap_daemon[t].sd_pollfd[slap_daemon[t].sd_nfds - 1].fd; \
slap_daemon[t].sd_pollfd[index] = slap_daemon[t].sd_pollfd[slap_daemon[t].sd_nfds - 1]; \
slap_daemon[t].sd_pollfd[slap_daemon[t].sd_nfds - 1] = pfd; \
slap_daemon[t].sd_index[fd] = index; \
} \
slap_daemon[t].sd_index[(s)] = -1; \
slap_daemon[t].sd_pollfd[slap_daemon[t].sd_nfds - 1].events = POLLREMOVE; \
SLAP_DEVPOLL_WRITE_POLLFD(t,(s), &slap_daemon[t].sd_pollfd[slap_daemon[t].sd_nfds - 1], 1, "DEL", 0); \
slap_daemon[t].sd_pollfd[slap_daemon[t].sd_nfds - 1].events = 0; \
slap_daemon[t].sd_nfds--; \
} while (0)
# define SLAP_EVENT_CLR_READ(i) SLAP_DEVPOLL_EVENT_CLR((i), POLLIN)
# define SLAP_EVENT_CLR_WRITE(i) SLAP_DEVPOLL_EVENT_CLR((i), POLLOUT)
# define SLAP_DEVPOLL_EVENT_CHK(i, mode) (revents[(i)].events & (mode))
# define SLAP_EVENT_FD(t,i) (revents[(i)].fd)
# define SLAP_EVENT_IS_READ(i) SLAP_DEVPOLL_EVENT_CHK((i), POLLIN)
# define SLAP_EVENT_IS_WRITE(i) SLAP_DEVPOLL_EVENT_CHK((i), POLLOUT)
# define SLAP_EVENT_IS_LISTENER(t,i) SLAP_DEVPOLL_EV_LISTENER(SLAP_DEVPOLL_SOCK_LX(t, SLAP_EVENT_FD(t,(i))))
# define SLAP_EVENT_LISTENER(t,i) SLAP_DEVPOLL_SOCK_LX(t, SLAP_EVENT_FD(t,(i)))
# define SLAP_SOCK_DESTROY(t) do { \
if ( slap_daemon[t].sd_pollfd != NULL ) { \
ch_free( slap_daemon[t].sd_pollfd ); \
slap_daemon[t].sd_pollfd = NULL; \
slap_daemon[t].sd_index = NULL; \
slap_daemon[t].sd_l = NULL; \
close( slap_daemon[t].sd_dpfd ); \
} \
} while ( 0 )
# define SLAP_SOCK_INIT(t) do { \
slap_daemon[t].sd_pollfd = ch_calloc( 1, \
( sizeof(struct pollfd) * 2 \
+ sizeof( int ) \
+ sizeof( Listener * ) ) * dtblsize ); \
slap_daemon[t].sd_index = (int *)&slap_daemon[t].sd_pollfd[ 2 * dtblsize ]; \
slap_daemon[t].sd_l = (Listener **)&slap_daemon[t].sd_index[ dtblsize ]; \
slap_daemon[t].sd_dpfd = open( SLAP_EVENT_FNAME, O_RDWR ); \
if ( slap_daemon[t].sd_dpfd == -1 ) { \
int saved_errno = errno; \
Debug( LDAP_DEBUG_ANY, "daemon: " SLAP_EVENT_FNAME ": " \
"open(\"" SLAP_EVENT_FNAME "\") failed errno=%d\n", \
saved_errno ); \
SLAP_SOCK_DESTROY(t); \
return -1; \
} \
for ( i = 0; i < dtblsize; i++ ) { \
slap_daemon[t].sd_pollfd[i].fd = -1; \
slap_daemon[t].sd_index[i] = -1; \
} \
} while (0)
# define SLAP_SOCK_INIT2()
# define SLAP_EVENT_DECL struct pollfd *revents
# define SLAP_EVENT_INIT(t) do { \
revents = &slap_daemon[t].sd_pollfd[ dtblsize ]; \
} while (0)
# define SLAP_EVENT_WAIT(t, tvp, nsp) do { \
struct dvpoll sd_dvpoll; \
sd_dvpoll.dp_timeout = (tvp) ? ((tvp)->tv_sec * 1000 + (tvp)->tv_usec / 1000) : -1; \
sd_dvpoll.dp_nfds = dtblsize; \
sd_dvpoll.dp_fds = revents; \
*(nsp) = ioctl( slap_daemon[t].sd_dpfd, DP_POLL, &sd_dvpoll ); \
} while (0)
#else /* ! kqueue && ! epoll && ! /dev/poll */
# ifdef HAVE_WINSOCK
# define SLAP_EVENT_FNAME "WSselect"
/* Winsock provides a "select" function but its fd_sets are
* actually arrays of sockets. Since these sockets are handles
* and not a contiguous range of small integers, we manage our
* own "fd" table of socket handles and use their indices as
* descriptors.
*
* All of our listener/connection structures use fds; the actual
* I/O functions use sockets. The SLAP_FD2SOCK macro in proto-slap.h
* handles the mapping.
*
* Despite the mapping overhead, this is about 45% more efficient
* than just using Winsock's select and FD_ISSET directly.
*
* Unfortunately Winsock's select implementation doesn't scale well
* as the number of connections increases. This probably needs to be
* rewritten to use the Winsock overlapped/asynchronous I/O functions.
*/
# define SLAP_EVENTS_ARE_INDEXED 1
# define SLAP_EVENT_DECL fd_set readfds, writefds; char *rflags
# define SLAP_EVENT_INIT(t) do { \
int i; \
FD_ZERO( &readfds ); \
FD_ZERO( &writefds ); \
rflags = slap_daemon[t].sd_rflags; \
memset( rflags, 0, slap_daemon[t].sd_nfds ); \
for ( i=0; i 0 ? &writefds : NULL, NULL, (tvp) ); \
for ( i=0; i= 0 ) { \
slap_daemon[t].sd_rflags[fd] = SD_READ; \
if ( fd >= *(nsp)) *(nsp) = fd+1; \
} \
} \
for ( i=0; i= 0 ) { \
slap_daemon[t].sd_rflags[fd] = SD_WRITE; \
if ( fd >= *(nsp)) *(nsp) = fd+1; \
} \
} \
} while (0)
# define SLAP_EVENT_IS_READ(fd) (rflags[fd] & SD_READ)
# define SLAP_EVENT_IS_WRITE(fd) (rflags[fd] & SD_WRITE)
# define SLAP_EVENT_CLR_READ(fd) rflags[fd] &= ~SD_READ
# define SLAP_EVENT_CLR_WRITE(fd) rflags[fd] &= ~SD_WRITE
# define SLAP_SOCK_INIT(t) do { \
if (!t) { \
ldap_pvt_thread_mutex_init( &slapd_ws_mutex ); \
slapd_ws_sockets = ch_malloc( dtblsize * ( sizeof(SOCKET) + 2)); \
memset( slapd_ws_sockets, -1, dtblsize * sizeof(SOCKET) ); \
} \
slap_daemon[t].sd_flags = (char *)(slapd_ws_sockets + dtblsize); \
slap_daemon[t].sd_rflags = slap_daemon[t].sd_flags + dtblsize; \
memset( slap_daemon[t].sd_flags, 0, dtblsize ); \
slapd_ws_sockets[t*2] = wake_sds[t][0]; \
slapd_ws_sockets[t*2+1] = wake_sds[t][1]; \
wake_sds[t][0] = t*2; \
wake_sds[t][1] = t*2+1; \
slap_daemon[t].sd_nfds = t*2 + 2; \
} while ( 0 )
# define SLAP_SOCK_INIT2()
# define SLAP_SOCK_DESTROY(t) do { \
ch_free( slapd_ws_sockets ); slapd_ws_sockets = NULL; \
slap_daemon[t].sd_flags = NULL; \
slap_daemon[t].sd_rflags = NULL; \
ldap_pvt_thread_mutex_destroy( &slapd_ws_mutex ); \
} while ( 0 )
# define SLAP_SOCK_IS_ACTIVE(t,fd) ( slap_daemon[t].sd_flags[fd] & SD_ACTIVE )
# define SLAP_SOCK_IS_READ(t,fd) ( slap_daemon[t].sd_flags[fd] & SD_READ )
# define SLAP_SOCK_IS_WRITE(t,fd) ( slap_daemon[t].sd_flags[fd] & SD_WRITE )
# define SLAP_SOCK_NOT_ACTIVE(t,fd) (!slap_daemon[t].sd_flags[fd])
# define SLAP_SOCK_SET_READ(t,fd) ( slap_daemon[t].sd_flags[fd] |= SD_READ )
# define SLAP_SOCK_SET_WRITE(t,fd) ( slap_daemon[t].sd_flags[fd] |= SD_WRITE )
# define SLAP_SELECT_ADDTEST(t,s) do { \
if ((s) >= slap_daemon[t].sd_nfds) slap_daemon[t].sd_nfds = (s)+1; \
} while (0)
# define SLAP_SOCK_CLR_READ(t,fd) ( slap_daemon[t].sd_flags[fd] &= ~SD_READ )
# define SLAP_SOCK_CLR_WRITE(t,fd) ( slap_daemon[t].sd_flags[fd] &= ~SD_WRITE )
# define SLAP_SOCK_ADD(t,s, l) do { \
SLAP_SELECT_ADDTEST(t,(s)); \
slap_daemon[t].sd_flags[s] = SD_ACTIVE|SD_READ; \
} while ( 0 )
# define SLAP_SOCK_DEL(t,s) do { \
slap_daemon[t].sd_flags[s] = 0; \
slapd_sockdel( s ); \
} while ( 0 )
# else /* !HAVE_WINSOCK */
/**************************************
* Use select system call - select(2) *
**************************************/
# define SLAP_EVENT_FNAME "select"
/* select */
# define SLAP_EVENTS_ARE_INDEXED 1
# define SLAP_EVENT_DECL fd_set readfds, writefds
# define SLAP_EVENT_INIT(t) do { \
AC_MEMCPY( &readfds, &slap_daemon[t].sd_readers, sizeof(fd_set) ); \
if ( nwriters ) { \
AC_MEMCPY( &writefds, &slap_daemon[t].sd_writers, sizeof(fd_set) ); \
} else { \
FD_ZERO( &writefds ); \
} \
} while (0)
# ifdef FD_SETSIZE
# define SLAP_SELECT_CHK_SETSIZE do { \
if (dtblsize > FD_SETSIZE) dtblsize = FD_SETSIZE; \
} while (0)
# else /* ! FD_SETSIZE */
# define SLAP_SELECT_CHK_SETSIZE do { ; } while (0)
# endif /* ! FD_SETSIZE */
# define SLAP_SOCK_INIT(t) do { \
SLAP_SELECT_CHK_SETSIZE; \
FD_ZERO(&slap_daemon[t].sd_actives); \
FD_ZERO(&slap_daemon[t].sd_readers); \
FD_ZERO(&slap_daemon[t].sd_writers); \
} while (0)
# define SLAP_SOCK_INIT2()
# define SLAP_SOCK_DESTROY(t)
# define SLAP_SOCK_IS_ACTIVE(t,fd) FD_ISSET((fd), &slap_daemon[t].sd_actives)
# define SLAP_SOCK_IS_READ(t,fd) FD_ISSET((fd), &slap_daemon[t].sd_readers)
# define SLAP_SOCK_IS_WRITE(t,fd) FD_ISSET((fd), &slap_daemon[t].sd_writers)
# define SLAP_SOCK_NOT_ACTIVE(t,fd) (!SLAP_SOCK_IS_ACTIVE(t,fd) && \
!SLAP_SOCK_IS_READ(t,fd) && !SLAP_SOCK_IS_WRITE(t,fd))
# define SLAP_SOCK_SET_READ(t,fd) FD_SET((fd), &slap_daemon[t].sd_readers)
# define SLAP_SOCK_SET_WRITE(t,fd) FD_SET((fd), &slap_daemon[t].sd_writers)
# define SLAP_EVENT_MAX(t) slap_daemon[t].sd_nfds
# define SLAP_SELECT_ADDTEST(t,s) do { \
if ((s) >= slap_daemon[t].sd_nfds) slap_daemon[t].sd_nfds = (s)+1; \
} while (0)
# define SLAP_SOCK_CLR_READ(t,fd) FD_CLR((fd), &slap_daemon[t].sd_readers)
# define SLAP_SOCK_CLR_WRITE(t,fd) FD_CLR((fd), &slap_daemon[t].sd_writers)
# define SLAP_SOCK_ADD(t,s, l) do { \
SLAP_SELECT_ADDTEST(t,(s)); \
FD_SET((s), &slap_daemon[t].sd_actives); \
FD_SET((s), &slap_daemon[t].sd_readers); \
} while (0)
# define SLAP_SOCK_DEL(t,s) do { \
FD_CLR((s), &slap_daemon[t].sd_actives); \
FD_CLR((s), &slap_daemon[t].sd_readers); \
FD_CLR((s), &slap_daemon[t].sd_writers); \
} while (0)
# define SLAP_EVENT_IS_READ(fd) FD_ISSET((fd), &readfds)
# define SLAP_EVENT_IS_WRITE(fd) FD_ISSET((fd), &writefds)
# define SLAP_EVENT_CLR_READ(fd) FD_CLR((fd), &readfds)
# define SLAP_EVENT_CLR_WRITE(fd) FD_CLR((fd), &writefds)
# define SLAP_EVENT_WAIT(t, tvp, nsp) do { \
*(nsp) = select( SLAP_EVENT_MAX(t), &readfds, \
nwriters > 0 ? &writefds : NULL, NULL, (tvp) ); \
} while (0)
# endif /* !HAVE_WINSOCK */
#endif /* ! kqueue && ! epoll && ! /dev/poll */
#ifdef HAVE_SLP
/*
* SLP related functions
*/
#include
#define LDAP_SRVTYPE_PREFIX "service:ldap://"
#define LDAPS_SRVTYPE_PREFIX "service:ldaps://"
static char** slapd_srvurls = NULL;
static SLPHandle slapd_hslp = 0;
int slapd_register_slp = 0;
const char *slapd_slp_attrs = NULL;
static SLPError slapd_slp_cookie;
static void
slapd_slp_init( const char* urls )
{
int i;
SLPError err;
slapd_srvurls = ldap_str2charray( urls, " " );
if ( slapd_srvurls == NULL ) return;
/* find and expand INADDR_ANY URLs */
for ( i = 0; slapd_srvurls[i] != NULL; i++ ) {
if ( strcmp( slapd_srvurls[i], "ldap:///" ) == 0 ) {
slapd_srvurls[i] = (char *) ch_realloc( slapd_srvurls[i],
global_host_bv.bv_len +
sizeof( LDAP_SRVTYPE_PREFIX ) );
strcpy( lutil_strcopy(slapd_srvurls[i],
LDAP_SRVTYPE_PREFIX ), global_host_bv.bv_val );
} else if ( strcmp( slapd_srvurls[i], "ldaps:///" ) == 0 ) {
slapd_srvurls[i] = (char *) ch_realloc( slapd_srvurls[i],
global_host_bv.bv_len +
sizeof( LDAPS_SRVTYPE_PREFIX ) );
strcpy( lutil_strcopy(slapd_srvurls[i],
LDAPS_SRVTYPE_PREFIX ), global_host_bv.bv_val );
}
}
/* open the SLP handle */
err = SLPOpen( "en", 0, &slapd_hslp );
if ( err != SLP_OK ) {
Debug( LDAP_DEBUG_CONNS, "daemon: SLPOpen() failed with %ld\n",
(long)err );
}
}
static void
slapd_slp_deinit( void )
{
if ( slapd_srvurls == NULL ) return;
ldap_charray_free( slapd_srvurls );
slapd_srvurls = NULL;
/* close the SLP handle */
SLPClose( slapd_hslp );
}
static void
slapd_slp_regreport(
SLPHandle hslp,
SLPError errcode,
void *cookie )
{
/* return the error code in the cookie */
*(SLPError*)cookie = errcode;
}
static void
slapd_slp_reg()
{
int i;
SLPError err;
if ( slapd_srvurls == NULL ) return;
for ( i = 0; slapd_srvurls[i] != NULL; i++ ) {
if ( strncmp( slapd_srvurls[i], LDAP_SRVTYPE_PREFIX,
sizeof( LDAP_SRVTYPE_PREFIX ) - 1 ) == 0 ||
strncmp( slapd_srvurls[i], LDAPS_SRVTYPE_PREFIX,
sizeof( LDAPS_SRVTYPE_PREFIX ) - 1 ) == 0 )
{
err = SLPReg( slapd_hslp,
slapd_srvurls[i],
SLP_LIFETIME_MAXIMUM,
"ldap",
(slapd_slp_attrs) ? slapd_slp_attrs : "",
SLP_TRUE,
slapd_slp_regreport,
&slapd_slp_cookie );
if ( err != SLP_OK || slapd_slp_cookie != SLP_OK ) {
Debug( LDAP_DEBUG_CONNS,
"daemon: SLPReg(%s) failed with %ld, cookie = %ld\n",
slapd_srvurls[i], (long)err, (long)slapd_slp_cookie );
}
}
}
}
static void
slapd_slp_dereg( void )
{
int i;
SLPError err;
if ( slapd_srvurls == NULL ) return;
for ( i = 0; slapd_srvurls[i] != NULL; i++ ) {
err = SLPDereg( slapd_hslp,
slapd_srvurls[i],
slapd_slp_regreport,
&slapd_slp_cookie );
if ( err != SLP_OK || slapd_slp_cookie != SLP_OK ) {
Debug( LDAP_DEBUG_CONNS,
"daemon: SLPDereg(%s) failed with %ld, cookie = %ld\n",
slapd_srvurls[i], (long)err, (long)slapd_slp_cookie );
}
}
}
#endif /* HAVE_SLP */
#ifdef HAVE_WINSOCK
/* Manage the descriptor to socket table */
ber_socket_t
slapd_socknew( ber_socket_t s )
{
ber_socket_t i;
ldap_pvt_thread_mutex_lock( &slapd_ws_mutex );
for ( i = 0; i < dtblsize && slapd_ws_sockets[i] != INVALID_SOCKET; i++ );
if ( i == dtblsize ) {
WSASetLastError( WSAEMFILE );
} else {
slapd_ws_sockets[i] = s;
}
ldap_pvt_thread_mutex_unlock( &slapd_ws_mutex );
return i;
}
void
slapd_sockdel( ber_socket_t s )
{
ldap_pvt_thread_mutex_lock( &slapd_ws_mutex );
slapd_ws_sockets[s] = INVALID_SOCKET;
ldap_pvt_thread_mutex_unlock( &slapd_ws_mutex );
}
ber_socket_t
slapd_sock2fd( ber_socket_t s )
{
ber_socket_t i;
for ( i=0; i
#ifndef RTLD_NEXT
#define RTLD_NEXT (void *)-1L
#endif
static char *newconns;
typedef int (closefunc)(int fd);
static closefunc *close_ptr;
int close( int s )
{
if (newconns) {
Debug( LDAP_DEBUG_CONNS,
"daemon: close(%d)\n", s );
if (s >= 0 && s < dtblsize && newconns[s])
assert(newconns[s] == 2);
}
return close_ptr ? close_ptr(s) : -1;
}
void slapd_debug_close()
{
if (dtblsize)
newconns = ch_calloc(1, dtblsize);
close_ptr = dlsym(RTLD_NEXT, "close");
}
void slapd_set_close(int fd)
{
newconns[fd] = 3;
}
#define SETUP_CLOSE() slapd_debug_close()
#define SET_CLOSE(fd) slapd_set_close(fd)
#define CLR_CLOSE(fd) if (newconns[fd]) newconns[fd]--
#else
#define SETUP_CLOSE(fd)
#define SET_CLOSE(fd)
#define CLR_CLOSE(fd)
#endif
/*
* Add a descriptor to daemon control
*
* If isactive, the descriptor is a live server session and is subject
* to idletimeout control. Otherwise, the descriptor is a passive
* listener or an outbound client session, and not subject to
* idletimeout. The underlying event handler may record the Listener
* argument to differentiate Listener's from real sessions.
*/
static void
slapd_add( ber_socket_t s, int isactive, Listener *sl, int id )
{
if (id < 0)
id = DAEMON_ID(s);
ldap_pvt_thread_mutex_lock( &slap_daemon[id].sd_mutex );
assert( SLAP_SOCK_NOT_ACTIVE(id, s) );
if ( isactive ) slap_daemon[id].sd_nactives++;
SLAP_SOCK_ADD(id, s, sl);
Debug( LDAP_DEBUG_CONNS, "daemon: added %ldr%s listener=%p\n",
(long) s, isactive ? " (active)" : "", (void *)sl );
ldap_pvt_thread_mutex_unlock( &slap_daemon[id].sd_mutex );
WAKE_LISTENER(id,1);
}
/*
* Remove the descriptor from daemon control
*/
void
slapd_remove(
ber_socket_t s,
Sockbuf *sb,
int wasactive,
int wake,
int locked )
{
int waswriter;
int wasreader;
int id = DAEMON_ID(s);
if ( !locked )
ldap_pvt_thread_mutex_lock( &slap_daemon[id].sd_mutex );
assert( SLAP_SOCK_IS_ACTIVE( id, s ));
if ( wasactive ) slap_daemon[id].sd_nactives--;
waswriter = SLAP_SOCK_IS_WRITE(id, s);
wasreader = SLAP_SOCK_IS_READ(id, s);
Debug( LDAP_DEBUG_CONNS, "daemon: removing %ld%s%s\n",
(long) s,
wasreader ? "r" : "",
waswriter ? "w" : "" );
if ( waswriter ) slap_daemon[id].sd_nwriters--;
SLAP_SOCK_DEL(id, s);
CLR_CLOSE(s);
if ( sb )
ber_sockbuf_free(sb);
/* If we ran out of file descriptors, we dropped a listener from
* the select() loop. Now that we're removing a session from our
* control, we can try to resume a dropped listener to use.
*/
ldap_pvt_thread_mutex_lock( &emfile_mutex );
if ( emfile && listening ) {
int i;
for ( i = 0; slap_listeners[i] != NULL; i++ ) {
Listener *lr = slap_listeners[i];
if ( lr->sl_sd == AC_SOCKET_INVALID ) continue;
if ( lr->sl_sd == s ) continue;
if ( lr->sl_mute ) {
lr->sl_mute = 0;
emfile--;
if ( DAEMON_ID(lr->sl_sd) != id )
WAKE_LISTENER(DAEMON_ID(lr->sl_sd), wake);
break;
}
}
/* Walked the entire list without enabling anything; emfile
* counter is stale. Reset it.
*/
if ( slap_listeners[i] == NULL ) emfile = 0;
}
ldap_pvt_thread_mutex_unlock( &emfile_mutex );
ldap_pvt_thread_mutex_unlock( &slap_daemon[id].sd_mutex );
WAKE_LISTENER(id, wake || slapd_gentle_shutdown == 2);
}
void
slapd_clr_write( ber_socket_t s, int wake )
{
int id = DAEMON_ID(s);
ldap_pvt_thread_mutex_lock( &slap_daemon[id].sd_mutex );
if ( SLAP_SOCK_IS_WRITE( id, s )) {
assert( SLAP_SOCK_IS_ACTIVE( id, s ));
SLAP_SOCK_CLR_WRITE( id, s );
slap_daemon[id].sd_nwriters--;
}
ldap_pvt_thread_mutex_unlock( &slap_daemon[id].sd_mutex );
WAKE_LISTENER(id,wake);
}
void
slapd_set_write( ber_socket_t s, int wake )
{
int id = DAEMON_ID(s);
ldap_pvt_thread_mutex_lock( &slap_daemon[id].sd_mutex );
assert( SLAP_SOCK_IS_ACTIVE( id, s ));
if ( !SLAP_SOCK_IS_WRITE( id, s )) {
SLAP_SOCK_SET_WRITE( id, s );
slap_daemon[id].sd_nwriters++;
}
ldap_pvt_thread_mutex_unlock( &slap_daemon[id].sd_mutex );
WAKE_LISTENER(id,wake);
}
int
slapd_clr_read( ber_socket_t s, int wake )
{
int rc = 1;
int id = DAEMON_ID(s);
ldap_pvt_thread_mutex_lock( &slap_daemon[id].sd_mutex );
if ( SLAP_SOCK_IS_ACTIVE( id, s )) {
SLAP_SOCK_CLR_READ( id, s );
rc = 0;
}
ldap_pvt_thread_mutex_unlock( &slap_daemon[id].sd_mutex );
if ( !rc )
WAKE_LISTENER(id,wake);
return rc;
}
void
slapd_set_read( ber_socket_t s, int wake )
{
int do_wake = 1;
int id = DAEMON_ID(s);
ldap_pvt_thread_mutex_lock( &slap_daemon[id].sd_mutex );
if( SLAP_SOCK_IS_ACTIVE( id, s ) && !SLAP_SOCK_IS_READ( id, s )) {
SLAP_SOCK_SET_READ( id, s );
} else {
do_wake = 0;
}
ldap_pvt_thread_mutex_unlock( &slap_daemon[id].sd_mutex );
if ( do_wake )
WAKE_LISTENER(id,wake);
}
static void
slapd_close( ber_socket_t s )
{
Debug( LDAP_DEBUG_CONNS, "daemon: closing %ld\n",
(long) s );
CLR_CLOSE( SLAP_FD2SOCK(s) );
tcp_close( SLAP_FD2SOCK(s) );
#ifdef HAVE_WINSOCK
slapd_sockdel( s );
#endif
}
void
slapd_shutsock( ber_socket_t s )
{
Debug( LDAP_DEBUG_CONNS, "daemon: shutdown socket %ld\n",
(long) s );
shutdown( SLAP_FD2SOCK(s), 2 );
}
static void
slap_free_listener_addresses( struct sockaddr **sal )
{
struct sockaddr **sap;
if (sal == NULL) return;
for (sap = sal; *sap != NULL; sap++) ch_free(*sap);
ch_free(sal);
}
#if defined(LDAP_PF_LOCAL) || defined(SLAP_X_LISTENER_MOD)
static int
get_url_perms(
char **exts,
mode_t *perms,
int *crit )
{
int i;
assert( exts != NULL );
assert( perms != NULL );
assert( crit != NULL );
*crit = 0;
for ( i = 0; exts[ i ]; i++ ) {
char *type = exts[ i ];
int c = 0;
if ( type[ 0 ] == '!' ) {
c = 1;
type++;
}
if ( strncasecmp( type, LDAPI_MOD_URLEXT "=",
sizeof(LDAPI_MOD_URLEXT "=") - 1 ) == 0 )
{
char *value = type + ( sizeof(LDAPI_MOD_URLEXT "=") - 1 );
mode_t p = 0;
int j;
switch (strlen(value)) {
case 4:
/* skip leading '0' */
if ( value[ 0 ] != '0' ) return LDAP_OTHER;
value++;
case 3:
for ( j = 0; j < 3; j++) {
int v;
v = value[ j ] - '0';
if ( v < 0 || v > 7 ) return LDAP_OTHER;
p |= v << 3*(2-j);
}
break;
case 10:
for ( j = 1; j < 10; j++ ) {
static mode_t m[] = { 0,
S_IRUSR, S_IWUSR, S_IXUSR,
S_IRGRP, S_IWGRP, S_IXGRP,
S_IROTH, S_IWOTH, S_IXOTH
};
static const char c[] = "-rwxrwxrwx";
if ( value[ j ] == c[ j ] ) {
p |= m[ j ];
} else if ( value[ j ] != '-' ) {
return LDAP_OTHER;
}
}
break;
default:
return LDAP_OTHER;
}
*crit = c;
*perms = p;
return LDAP_SUCCESS;
}
}
return LDAP_OTHER;
}
#endif /* LDAP_PF_LOCAL || SLAP_X_LISTENER_MOD */
/* port = 0 indicates AF_LOCAL */
static int
slap_get_listener_addresses(
const char *host,
unsigned short port,
struct sockaddr ***sal )
{
struct sockaddr **sap;
#ifdef LDAP_PF_LOCAL
if ( port == 0 ) {
sap = *sal = ch_malloc(2 * sizeof(void *));
*sap = ch_malloc(sizeof(struct sockaddr_un));
sap[1] = NULL;
if ( strlen(host) >
(sizeof(((struct sockaddr_un *)*sap)->sun_path) - 1) )
{
Debug( LDAP_DEBUG_ANY,
"daemon: domain socket path (%s) too long in URL",
host );
goto errexit;
}
(void)memset( (void *)*sap, '\0', sizeof(struct sockaddr_un) );
(*sap)->sa_family = AF_LOCAL;
strcpy( ((struct sockaddr_un *)*sap)->sun_path, host );
} else
#endif /* LDAP_PF_LOCAL */
{
#ifdef HAVE_GETADDRINFO
struct addrinfo hints, *res, *sai;
int n, err;
char serv[7];
memset( &hints, '\0', sizeof(hints) );
hints.ai_flags = AI_PASSIVE;
hints.ai_socktype = SOCK_STREAM;
hints.ai_family = slap_inet4or6;
snprintf(serv, sizeof serv, "%d", port);
if ( (err = getaddrinfo(host, serv, &hints, &res)) ) {
Debug( LDAP_DEBUG_ANY, "daemon: getaddrinfo() failed: %s\n",
AC_GAI_STRERROR(err) );
return -1;
}
sai = res;
for (n=2; (sai = sai->ai_next) != NULL; n++) {
/* EMPTY */ ;
}
sap = *sal = ch_calloc(n, sizeof(void *));
*sap = NULL;
for ( sai=res; sai; sai=sai->ai_next ) {
if( sai->ai_addr == NULL ) {
Debug( LDAP_DEBUG_ANY, "slap_get_listener_addresses: "
"getaddrinfo ai_addr is NULL?\n" );
freeaddrinfo(res);
goto errexit;
}
switch (sai->ai_family) {
# ifdef LDAP_PF_INET6
case AF_INET6:
*sap = ch_malloc(sizeof(struct sockaddr_in6));
*(struct sockaddr_in6 *)*sap =
*((struct sockaddr_in6 *)sai->ai_addr);
break;
# endif /* LDAP_PF_INET6 */
case AF_INET:
*sap = ch_malloc(sizeof(struct sockaddr_in));
*(struct sockaddr_in *)*sap =
*((struct sockaddr_in *)sai->ai_addr);
break;
default:
*sap = NULL;
break;
}
if (*sap != NULL) {
(*sap)->sa_family = sai->ai_family;
sap++;
*sap = NULL;
}
}
freeaddrinfo(res);
#else /* ! HAVE_GETADDRINFO */
int i, n = 1;
struct in_addr in;
struct hostent *he = NULL;
if ( host == NULL ) {
in.s_addr = htonl(INADDR_ANY);
} else if ( !inet_aton( host, &in ) ) {
he = gethostbyname( host );
if( he == NULL ) {
Debug( LDAP_DEBUG_ANY,
"daemon: invalid host %s", host );
return -1;
}
for (n = 0; he->h_addr_list[n]; n++) /* empty */;
}
sap = *sal = ch_malloc((n+1) * sizeof(void *));
for ( i = 0; isa_family = AF_INET;
((struct sockaddr_in *)sap[i])->sin_port = htons(port);
AC_MEMCPY( &((struct sockaddr_in *)sap[i])->sin_addr,
he ? (struct in_addr *)he->h_addr_list[i] : &in,
sizeof(struct in_addr) );
}
sap[i] = NULL;
#endif /* ! HAVE_GETADDRINFO */
}
return 0;
errexit:
slap_free_listener_addresses(*sal);
return -1;
}
static int
slap_open_listener(
const char* url,
int *listeners,
int *cur )
{
int num, tmp, rc;
Listener l;
Listener *li;
LDAPURLDesc *lud;
unsigned short port;
int err, addrlen = 0;
struct sockaddr **sal = NULL, **psal;
int socktype = SOCK_STREAM; /* default to COTS */
ber_socket_t s;
char ebuf[128];
#if defined(LDAP_PF_LOCAL) || defined(SLAP_X_LISTENER_MOD)
/*
* use safe defaults
*/
int crit = 1;
#endif /* LDAP_PF_LOCAL || SLAP_X_LISTENER_MOD */
rc = ldap_url_parse( url, &lud );
if( rc != LDAP_URL_SUCCESS ) {
Debug( LDAP_DEBUG_ANY,
"daemon: listen URL \"%s\" parse error=%d\n",
url, rc );
return rc;
}
l.sl_url.bv_val = NULL;
l.sl_mute = 0;
l.sl_busy = 0;
#ifndef HAVE_TLS
if( ldap_pvt_url_scheme2tls( lud->lud_scheme ) ) {
Debug( LDAP_DEBUG_ANY, "daemon: TLS not supported (%s)\n",
url );
ldap_free_urldesc( lud );
return -1;
}
if(! lud->lud_port ) lud->lud_port = LDAP_PORT;
#else /* HAVE_TLS */
l.sl_is_tls = ldap_pvt_url_scheme2tls( lud->lud_scheme );
if(! lud->lud_port ) {
lud->lud_port = l.sl_is_tls ? LDAPS_PORT : LDAP_PORT;
}
#endif /* HAVE_TLS */
l.sl_is_proxied = ldap_pvt_url_scheme2proxied( lud->lud_scheme );
#ifdef LDAP_TCP_BUFFER
l.sl_tcp_rmem = 0;
l.sl_tcp_wmem = 0;
#endif /* LDAP_TCP_BUFFER */
port = (unsigned short) lud->lud_port;
tmp = ldap_pvt_url_scheme2proto(lud->lud_scheme);
if ( tmp == LDAP_PROTO_IPC ) {
#ifdef LDAP_PF_LOCAL
if ( lud->lud_host == NULL || lud->lud_host[0] == '\0' ) {
err = slap_get_listener_addresses(LDAPI_SOCK, 0, &sal);
} else {
err = slap_get_listener_addresses(lud->lud_host, 0, &sal);
}
#else /* ! LDAP_PF_LOCAL */
Debug( LDAP_DEBUG_ANY, "daemon: URL scheme not supported: %s",
url );
ldap_free_urldesc( lud );
return -1;
#endif /* ! LDAP_PF_LOCAL */
} else {
if( lud->lud_host == NULL || lud->lud_host[0] == '\0'
|| strcmp(lud->lud_host, "*") == 0 )
{
err = slap_get_listener_addresses(NULL, port, &sal);
} else {
err = slap_get_listener_addresses(lud->lud_host, port, &sal);
}
}
#ifdef LDAP_CONNECTIONLESS
l.sl_is_udp = ( tmp == LDAP_PROTO_UDP );
#endif /* LDAP_CONNECTIONLESS */
#if defined(LDAP_PF_LOCAL) || defined(SLAP_X_LISTENER_MOD)
if ( lud->lud_exts ) {
err = get_url_perms( lud->lud_exts, &l.sl_perms, &crit );
} else {
l.sl_perms = S_IRWXU | S_IRWXO;
}
#endif /* LDAP_PF_LOCAL || SLAP_X_LISTENER_MOD */
if ( lud->lud_dn && lud->lud_dn[0] ) {
sprintf( (char *)url, "%s://%s/", lud->lud_scheme, lud->lud_host );
Debug( LDAP_DEBUG_ANY, "daemon: listener URL %s DN must be absent (%s)\n",
url, lud->lud_dn );
ldap_free_urldesc( lud );
return -1;
}
ldap_free_urldesc( lud );
if ( err ) {
slap_free_listener_addresses(sal);
return -1;
}
/* If we got more than one address returned, we need to make space
* for it in the slap_listeners array.
*/
for ( num=0; sal[num]; num++ ) /* empty */;
if ( num > 1 ) {
*listeners += num-1;
slap_listeners = ch_realloc( slap_listeners,
(*listeners + 1) * sizeof(Listener *) );
}
psal = sal;
while ( *sal != NULL ) {
char *af;
switch( (*sal)->sa_family ) {
case AF_INET:
af = "IPv4";
break;
#ifdef LDAP_PF_INET6
case AF_INET6:
af = "IPv6";
break;
#endif /* LDAP_PF_INET6 */
#ifdef LDAP_PF_LOCAL
case AF_LOCAL:
af = "Local";
break;
#endif /* LDAP_PF_LOCAL */
default:
sal++;
continue;
}
#ifdef LDAP_CONNECTIONLESS
if( l.sl_is_udp ) socktype = SOCK_DGRAM;
#endif /* LDAP_CONNECTIONLESS */
s = socket( (*sal)->sa_family, socktype, 0);
if ( s == AC_SOCKET_INVALID ) {
int err = sock_errno();
Debug( LDAP_DEBUG_ANY,
"daemon: %s socket() failed errno=%d (%s)\n",
af, err, sock_errstr(err, ebuf, sizeof(ebuf)) );
sal++;
continue;
}
l.sl_sd = SLAP_SOCKNEW( s );
if ( l.sl_sd >= dtblsize ) {
Debug( LDAP_DEBUG_ANY,
"daemon: listener descriptor %ld is too great %ld\n",
(long) l.sl_sd, (long) dtblsize );
tcp_close( s );
sal++;
continue;
}
#ifdef LDAP_PF_LOCAL
if ( (*sal)->sa_family == AF_LOCAL ) {
unlink( ((struct sockaddr_un *)*sal)->sun_path );
} else
#endif /* LDAP_PF_LOCAL */
{
#ifdef SO_REUSEADDR
/* enable address reuse */
tmp = 1;
rc = setsockopt( s, SOL_SOCKET, SO_REUSEADDR,
(char *) &tmp, sizeof(tmp) );
if ( rc == AC_SOCKET_ERROR ) {
int err = sock_errno();
Debug( LDAP_DEBUG_ANY, "slapd(%ld): "
"setsockopt(SO_REUSEADDR) failed errno=%d (%s)\n",
(long) l.sl_sd, err, sock_errstr(err, ebuf, sizeof(ebuf)) );
}
#endif /* SO_REUSEADDR */
}
switch( (*sal)->sa_family ) {
case AF_INET:
addrlen = sizeof(struct sockaddr_in);
break;
#ifdef LDAP_PF_INET6
case AF_INET6:
#ifdef IPV6_V6ONLY
/* Try to use IPv6 sockets for IPv6 only */
tmp = 1;
rc = setsockopt( s , IPPROTO_IPV6, IPV6_V6ONLY,
(char *) &tmp, sizeof(tmp) );
if ( rc == AC_SOCKET_ERROR ) {
int err = sock_errno();
Debug( LDAP_DEBUG_ANY, "slapd(%ld): "
"setsockopt(IPV6_V6ONLY) failed errno=%d (%s)\n",
(long) l.sl_sd, err, sock_errstr(err, ebuf, sizeof(ebuf)) );
}
#endif /* IPV6_V6ONLY */
addrlen = sizeof(struct sockaddr_in6);
break;
#endif /* LDAP_PF_INET6 */
#ifdef LDAP_PF_LOCAL
case AF_LOCAL:
#ifdef LOCAL_CREDS
{
int one = 1;
setsockopt( s, 0, LOCAL_CREDS, &one, sizeof( one ) );
}
#endif /* LOCAL_CREDS */
addrlen = sizeof( struct sockaddr_un );
break;
#endif /* LDAP_PF_LOCAL */
}
#ifdef LDAP_PF_LOCAL
/* create socket with all permissions set for those systems
* that honor permissions on sockets (e.g. Linux); typically,
* only write is required. To exploit filesystem permissions,
* place the socket in a directory and use directory's
* permissions. Need write perms to the directory to
* create/unlink the socket; likely need exec perms to access
* the socket (ITS#4709) */
{
mode_t old_umask = 0;
if ( (*sal)->sa_family == AF_LOCAL ) {
old_umask = umask( 0 );
}
#endif /* LDAP_PF_LOCAL */
rc = bind( s, *sal, addrlen );
#ifdef LDAP_PF_LOCAL
if ( old_umask != 0 ) {
umask( old_umask );
}
}
#endif /* LDAP_PF_LOCAL */
if ( rc ) {
err = sock_errno();
Debug( LDAP_DEBUG_ANY,
"daemon: bind(%ld) failed errno=%d (%s)\n",
(long)l.sl_sd, err, sock_errstr( err, ebuf, sizeof(ebuf) ) );
tcp_close( s );
sal++;
continue;
}
switch ( (*sal)->sa_family ) {
#ifdef LDAP_PF_LOCAL
case AF_LOCAL: {
char *path = ((struct sockaddr_un *)*sal)->sun_path;
l.sl_name.bv_len = strlen(path) + STRLENOF("PATH=");
l.sl_name.bv_val = ch_malloc( l.sl_name.bv_len + 1 );
snprintf( l.sl_name.bv_val, l.sl_name.bv_len + 1,
"PATH=%s", path );
} break;
#endif /* LDAP_PF_LOCAL */
case AF_INET: {
char addr[INET_ADDRSTRLEN];
const char *s;
#if defined( HAVE_GETADDRINFO ) && defined( HAVE_INET_NTOP )
s = inet_ntop( AF_INET, &((struct sockaddr_in *)*sal)->sin_addr,
addr, sizeof(addr) );
#else /* ! HAVE_GETADDRINFO || ! HAVE_INET_NTOP */
s = inet_ntoa( ((struct sockaddr_in *) *sal)->sin_addr );
#endif /* ! HAVE_GETADDRINFO || ! HAVE_INET_NTOP */
if (!s) s = SLAP_STRING_UNKNOWN;
port = ntohs( ((struct sockaddr_in *)*sal) ->sin_port );
l.sl_name.bv_val =
ch_malloc( sizeof("IP=255.255.255.255:65535") );
snprintf( l.sl_name.bv_val, sizeof("IP=255.255.255.255:65535"),
"IP=%s:%d", s, port );
l.sl_name.bv_len = strlen( l.sl_name.bv_val );
} break;
#ifdef LDAP_PF_INET6
case AF_INET6: {
char addr[INET6_ADDRSTRLEN];
const char *s;
s = inet_ntop( AF_INET6, &((struct sockaddr_in6 *)*sal)->sin6_addr,
addr, sizeof addr);
if (!s) s = SLAP_STRING_UNKNOWN;
port = ntohs( ((struct sockaddr_in6 *)*sal)->sin6_port );
l.sl_name.bv_len = strlen(s) + sizeof("IP=[]:65535");
l.sl_name.bv_val = ch_malloc( l.sl_name.bv_len );
snprintf( l.sl_name.bv_val, l.sl_name.bv_len, "IP=[%s]:%d",
s, port );
l.sl_name.bv_len = strlen( l.sl_name.bv_val );
} break;
#endif /* LDAP_PF_INET6 */
default:
Debug( LDAP_DEBUG_ANY, "daemon: unsupported address family (%d)\n",
(int) (*sal)->sa_family );
break;
}
AC_MEMCPY(&l.sl_sa, *sal, addrlen);
ber_str2bv( url, 0, 1, &l.sl_url);
li = ch_malloc( sizeof( Listener ) );
*li = l;
slap_listeners[*cur] = li;
(*cur)++;
sal++;
}
slap_free_listener_addresses(psal);
if ( l.sl_url.bv_val == NULL ) {
Debug( LDAP_DEBUG_TRACE,
"slap_open_listener: failed on %s\n", url );
return -1;
}
Debug( LDAP_DEBUG_TRACE, "daemon: listener initialized %s\n",
l.sl_url.bv_val );
return 0;
}
static int sockinit(void);
static int sockdestroy(void);
static int daemon_inited = 0;
int
slapd_daemon_init( const char *urls )
{
int i, j, n, rc;
char **u;
Debug( LDAP_DEBUG_ARGS, "daemon_init: %s\n",
urls ? urls : "" );
wake_sds = ch_malloc( slapd_daemon_threads * sizeof( sdpair ));
for ( i=0; isl_sd == i ) {
sl = slap_listeners[j];
num_listeners--;
break;
}
}
}
SLAP_SOCK_ADD( newid, i, sl );
if ( SLAP_SOCK_IS_READ( oldid, i )) {
SLAP_SOCK_SET_READ( newid, i );
}
if ( SLAP_SOCK_IS_WRITE( oldid, i )) {
SLAP_SOCK_SET_WRITE( newid, i );
slap_daemon[oldid].sd_nwriters--;
slap_daemon[newid].sd_nwriters++;
}
if ( connection_is_active( i )) {
slap_daemon[oldid].sd_nactives--;
slap_daemon[newid].sd_nactives++;
}
SLAP_SOCK_DEL( oldid, i );
}
}
int
slapd_daemon_destroy( void )
{
connections_destroy();
if ( daemon_inited ) {
int i;
for ( i=0; isl_sd != AC_SOCKET_INVALID ) {
int s = lr->sl_sd;
lr->sl_sd = AC_SOCKET_INVALID;
if ( remove ) slapd_remove( s, NULL, 0, 0, 0 );
#ifdef LDAP_PF_LOCAL
if ( lr->sl_sa.sa_addr.sa_family == AF_LOCAL ) {
unlink( lr->sl_sa.sa_un_addr.sun_path );
}
#endif /* LDAP_PF_LOCAL */
slapd_close( s );
}
}
}
static void
destroy_listeners( void )
{
Listener *lr, **ll = slap_listeners;
if ( ll == NULL )
return;
while ( (lr = *ll++) != NULL ) {
if ( lr->sl_url.bv_val ) {
ber_memfree( lr->sl_url.bv_val );
}
if ( lr->sl_name.bv_val ) {
ber_memfree( lr->sl_name.bv_val );
}
free( lr );
}
free( slap_listeners );
slap_listeners = NULL;
}
static int
slap_listener(
Listener *sl )
{
Sockaddr from;
ber_socket_t s, sfd;
ber_socklen_t len = sizeof(from);
Connection *c;
slap_ssf_t ssf = 0;
struct berval authid = BER_BVNULL;
#ifdef SLAPD_RLOOKUPS
char hbuf[NI_MAXHOST];
#endif /* SLAPD_RLOOKUPS */
char *dnsname = NULL;
/* we assume INET6_ADDRSTRLEN > INET_ADDRSTRLEN */
char peername[LDAP_IPADDRLEN];
struct berval peerbv = BER_BVC(peername);
#ifdef LDAP_PF_LOCAL_SENDMSG
char peerbuf[8];
struct berval peerbv = BER_BVNULL;
#endif
int cflag;
int tid;
char ebuf[128];
Debug( LDAP_DEBUG_TRACE,
">>> slap_listener(%s)\n",
sl->sl_url.bv_val );
peername[0] = '\0';
#ifdef LDAP_CONNECTIONLESS
if ( sl->sl_is_udp ) return 1;
#endif /* LDAP_CONNECTIONLESS */
# ifdef LDAP_PF_LOCAL
/* FIXME: apparently accept doesn't fill
* the sun_path sun_path member */
from.sa_un_addr.sun_path[0] = '\0';
# endif /* LDAP_PF_LOCAL */
s = accept( SLAP_FD2SOCK( sl->sl_sd ), (struct sockaddr *) &from, &len );
if ( s != AC_SOCKET_INVALID ) {
SET_CLOSE(s);
}
Debug( LDAP_DEBUG_CONNS,
"daemon: accept() = %d\n", s );
/* Resume the listener FD to allow concurrent-processing of
* additional incoming connections.
*/
sl->sl_busy = 0;
WAKE_LISTENER(DAEMON_ID(sl->sl_sd),1);
if ( s == AC_SOCKET_INVALID ) {
int err = sock_errno();
if(
#ifdef EMFILE
err == EMFILE ||
#endif /* EMFILE */
#ifdef ENFILE
err == ENFILE ||
#endif /* ENFILE */
0 )
{
ldap_pvt_thread_mutex_lock( &emfile_mutex );
emfile++;
/* Stop listening until an existing session closes */
sl->sl_mute = 1;
ldap_pvt_thread_mutex_unlock( &emfile_mutex );
}
Debug( LDAP_DEBUG_ANY,
"daemon: accept(%ld) failed errno=%d (%s)\n",
(long) sl->sl_sd, err, sock_errstr(err, ebuf, sizeof(ebuf)) );
ldap_pvt_thread_yield();
return 0;
}
sfd = SLAP_SOCKNEW( s );
/* make sure descriptor number isn't too great */
if ( sfd >= dtblsize ) {
Debug( LDAP_DEBUG_ANY,
"daemon: %ld beyond descriptor table size %ld\n",
(long) sfd, (long) dtblsize );
tcp_close(s);
ldap_pvt_thread_yield();
return 0;
}
tid = DAEMON_ID(sfd);
#ifdef LDAP_DEBUG
ldap_pvt_thread_mutex_lock( &slap_daemon[tid].sd_mutex );
/* newly accepted stream should not be in any of the FD SETS */
assert( SLAP_SOCK_NOT_ACTIVE( tid, sfd ));
ldap_pvt_thread_mutex_unlock( &slap_daemon[tid].sd_mutex );
#endif /* LDAP_DEBUG */
#if defined( SO_KEEPALIVE ) || defined( TCP_NODELAY )
#ifdef LDAP_PF_LOCAL
/* for IPv4 and IPv6 sockets only */
if ( from.sa_addr.sa_family != AF_LOCAL )
#endif /* LDAP_PF_LOCAL */
{
int rc;
int tmp;
#ifdef SO_KEEPALIVE
/* enable keep alives */
tmp = 1;
rc = setsockopt( s, SOL_SOCKET, SO_KEEPALIVE,
(char *) &tmp, sizeof(tmp) );
if ( rc == AC_SOCKET_ERROR ) {
int err = sock_errno();
Debug( LDAP_DEBUG_ANY,
"slapd(%ld): setsockopt(SO_KEEPALIVE) failed "
"errno=%d (%s)\n", (long) sfd, err, sock_errstr(err, ebuf, sizeof(ebuf)) );
slapd_close(sfd);
return 0;
}
#endif /* SO_KEEPALIVE */
#ifdef TCP_NODELAY
/* enable no delay */
tmp = 1;
rc = setsockopt( s, IPPROTO_TCP, TCP_NODELAY,
(char *)&tmp, sizeof(tmp) );
if ( rc == AC_SOCKET_ERROR ) {
int err = sock_errno();
Debug( LDAP_DEBUG_ANY,
"slapd(%ld): setsockopt(TCP_NODELAY) failed "
"errno=%d (%s)\n", (long) sfd, err, sock_errstr(err, ebuf, sizeof(ebuf)) );
slapd_close(sfd);
return 0;
}
#endif /* TCP_NODELAY */
}
#endif /* SO_KEEPALIVE || TCP_NODELAY */
Debug( LDAP_DEBUG_CONNS,
"daemon: listen=%ld, new connection on %ld\n",
(long) sl->sl_sd, (long) sfd );
cflag = 0;
switch ( from.sa_addr.sa_family ) {
# ifdef LDAP_PF_LOCAL
case AF_LOCAL:
cflag |= CONN_IS_IPC;
/* FIXME: apparently accept doesn't fill
* the sun_path sun_path member */
if ( from.sa_un_addr.sun_path[0] == '\0' ) {
AC_MEMCPY( from.sa_un_addr.sun_path,
sl->sl_sa.sa_un_addr.sun_path,
sizeof( from.sa_un_addr.sun_path ) );
}
sprintf( peername, "PATH=%s", from.sa_un_addr.sun_path );
ssf = local_ssf;
{
uid_t uid;
gid_t gid;
#ifdef LDAP_PF_LOCAL_SENDMSG
peerbv.bv_val = peerbuf;
peerbv.bv_len = sizeof( peerbuf );
#endif
if( LUTIL_GETPEEREID( s, &uid, &gid, &peerbv ) == 0 ) {
authid.bv_val = ch_malloc(
STRLENOF( "gidNumber=4294967295+uidNumber=4294967295,"
"cn=peercred,cn=external,cn=auth" ) + 1 );
authid.bv_len = sprintf( authid.bv_val,
"gidNumber=%d+uidNumber=%d,"
"cn=peercred,cn=external,cn=auth",
(int) gid, (int) uid );
assert( authid.bv_len <=
STRLENOF( "gidNumber=4294967295+uidNumber=4294967295,"
"cn=peercred,cn=external,cn=auth" ) );
}
}
dnsname = "local";
break;
#endif /* LDAP_PF_LOCAL */
# ifdef LDAP_PF_INET6
case AF_INET6:
# endif /* LDAP_PF_INET6 */
case AF_INET:
if ( sl->sl_is_proxied ) {
if ( !proxyp( sfd, &from ) ) {
Debug( LDAP_DEBUG_ANY, "slapd(%ld): proxyp failed\n", (long)sfd );
slapd_close( sfd );
return 0;
}
}
ldap_pvt_sockaddrstr( &from, &peerbv );
break;
default:
slapd_close(sfd);
return 0;
}
if ( ( from.sa_addr.sa_family == AF_INET )
#ifdef LDAP_PF_INET6
|| ( from.sa_addr.sa_family == AF_INET6 )
#endif /* LDAP_PF_INET6 */
)
{
dnsname = NULL;
#ifdef SLAPD_RLOOKUPS
if ( use_reverse_lookup ) {
char *herr;
if (ldap_pvt_get_hname( (const struct sockaddr *)&from, len, hbuf,
sizeof(hbuf), &herr ) == 0) {
ldap_pvt_str2lower( hbuf );
dnsname = hbuf;
}
}
#endif /* SLAPD_RLOOKUPS */
#ifdef HAVE_TCPD
{
int rc;
char *peeraddr, *paend;
peeraddr = peerbv.bv_val + 3;
if ( *peeraddr == '[' ) {
peeraddr++;
paend = strrchr( peeraddr, ']' );
} else {
paend = strrchr( peeraddr, ':' );
}
if ( paend )
*paend = '\0';
ldap_pvt_thread_mutex_lock( &sd_tcpd_mutex );
rc = hosts_ctl("slapd",
dnsname != NULL ? dnsname : SLAP_STRING_UNKNOWN,
peeraddr,
SLAP_STRING_UNKNOWN );
ldap_pvt_thread_mutex_unlock( &sd_tcpd_mutex );
if ( !rc ) {
/* DENY ACCESS */
Debug( LDAP_DEBUG_STATS,
"fd=%ld DENIED from %s (%s)\n",
(long) sfd,
dnsname != NULL ? dnsname : SLAP_STRING_UNKNOWN,
peeraddr );
slapd_close(sfd);
return 0;
}
if ( paend ) {
if ( peeraddr[-1] == '[' )
*paend = ']';
else
*paend = ':';
}
}
#endif /* HAVE_TCPD */
}
#ifdef HAVE_TLS
if ( sl->sl_is_tls ) cflag |= CONN_IS_TLS;
#endif
c = connection_init(sfd, sl,
dnsname != NULL ? dnsname : SLAP_STRING_UNKNOWN,
peername, cflag, ssf,
authid.bv_val ? &authid : NULL
LDAP_PF_LOCAL_SENDMSG_ARG(&peerbv));
if( authid.bv_val ) ch_free(authid.bv_val);
if( !c ) {
Debug( LDAP_DEBUG_ANY,
"daemon: connection_init(%ld, %s, %s) failed.\n",
(long) sfd, peername, sl->sl_name.bv_val );
slapd_close(sfd);
}
return 0;
}
static void*
slap_listener_thread(
void* ctx,
void* ptr )
{
int rc;
Listener *sl = (Listener *)ptr;
rc = slap_listener( sl );
if( rc != LDAP_SUCCESS ) {
Debug( LDAP_DEBUG_ANY,
"slap_listener_thread(%s): failed err=%d",
sl->sl_url.bv_val, rc );
}
return (void*)NULL;
}
static int
slap_listener_activate(
Listener* sl )
{
int rc;
Debug( LDAP_DEBUG_TRACE, "slap_listener_activate(%d): %s\n",
sl->sl_sd, sl->sl_busy ? "busy" : "" );
sl->sl_busy = 1;
rc = ldap_pvt_thread_pool_submit( &connection_pool,
slap_listener_thread, (void *) sl );
if( rc != 0 ) {
Debug( LDAP_DEBUG_ANY,
"slap_listener_activate(%d): submit failed (%d)\n",
sl->sl_sd, rc );
}
return rc;
}
static void *
slapd_daemon_task(
void *ptr )
{
int l;
time_t last_idle_check = 0;
int ebadf = 0;
int tid = (slap_daemon_st *) ptr - slap_daemon;
char ebuf[128];
#define SLAPD_IDLE_CHECK_LIMIT 4
slapd_add( wake_sds[tid][0], 0, NULL, tid );
if ( tid )
goto loop;
/* Init stuff done only by thread 0 */
last_idle_check = slap_get_time();
for ( l = 0; slap_listeners[l] != NULL; l++ ) {
if ( slap_listeners[l]->sl_sd == AC_SOCKET_INVALID ) continue;
#ifdef LDAP_CONNECTIONLESS
/* Since this is connectionless, the data port is the
* listening port. The listen() and accept() calls
* are unnecessary.
*/
if ( slap_listeners[l]->sl_is_udp )
continue;
#endif /* LDAP_CONNECTIONLESS */
/* FIXME: TCP-only! */
#ifdef LDAP_TCP_BUFFER
if ( 1 ) {
int origsize, size, realsize, rc;
socklen_t optlen;
size = 0;
if ( slap_listeners[l]->sl_tcp_rmem > 0 ) {
size = slap_listeners[l]->sl_tcp_rmem;
} else if ( slapd_tcp_rmem > 0 ) {
size = slapd_tcp_rmem;
}
if ( size > 0 ) {
optlen = sizeof( origsize );
rc = getsockopt( SLAP_FD2SOCK( slap_listeners[l]->sl_sd ),
SOL_SOCKET,
SO_RCVBUF,
(void *)&origsize,
&optlen );
if ( rc ) {
int err = sock_errno();
Debug( LDAP_DEBUG_ANY,
"slapd_daemon_task: getsockopt(SO_RCVBUF) failed errno=%d (%s)\n",
err, sock_errstr(err, ebuf, sizeof(ebuf)) );
}
optlen = sizeof( size );
rc = setsockopt( SLAP_FD2SOCK( slap_listeners[l]->sl_sd ),
SOL_SOCKET,
SO_RCVBUF,
(const void *)&size,
optlen );
if ( rc ) {
int err = sock_errno();
Debug( LDAP_DEBUG_ANY,
"slapd_daemon_task: setsockopt(SO_RCVBUF) failed errno=%d (%s)\n",
err, sock_errstr(err, ebuf, sizeof(ebuf)) );
}
optlen = sizeof( realsize );
rc = getsockopt( SLAP_FD2SOCK( slap_listeners[l]->sl_sd ),
SOL_SOCKET,
SO_RCVBUF,
(void *)&realsize,
&optlen );
if ( rc ) {
int err = sock_errno();
Debug( LDAP_DEBUG_ANY,
"slapd_daemon_task: getsockopt(SO_RCVBUF) failed errno=%d (%s)\n",
err, sock_errstr(err, ebuf, sizeof(ebuf)) );
}
Debug(LDAP_DEBUG_ANY,
"slapd_daemon_task: url=%s (#%d) RCVBUF original size=%d requested size=%d real size=%d\n",
slap_listeners[l]->sl_url.bv_val, l,
origsize, size, realsize );
}
size = 0;
if ( slap_listeners[l]->sl_tcp_wmem > 0 ) {
size = slap_listeners[l]->sl_tcp_wmem;
} else if ( slapd_tcp_wmem > 0 ) {
size = slapd_tcp_wmem;
}
if ( size > 0 ) {
optlen = sizeof( origsize );
rc = getsockopt( SLAP_FD2SOCK( slap_listeners[l]->sl_sd ),
SOL_SOCKET,
SO_SNDBUF,
(void *)&origsize,
&optlen );
if ( rc ) {
int err = sock_errno();
Debug( LDAP_DEBUG_ANY,
"slapd_daemon_task: getsockopt(SO_SNDBUF) failed errno=%d (%s)\n",
err, sock_errstr(err, ebuf, sizeof(ebuf)) );
}
optlen = sizeof( size );
rc = setsockopt( SLAP_FD2SOCK( slap_listeners[l]->sl_sd ),
SOL_SOCKET,
SO_SNDBUF,
(const void *)&size,
optlen );
if ( rc ) {
int err = sock_errno();
Debug( LDAP_DEBUG_ANY,
"slapd_daemon_task: setsockopt(SO_SNDBUF) failed errno=%d (%s)",
err, sock_errstr(err, ebuf, sizeof(ebuf)) );
}
optlen = sizeof( realsize );
rc = getsockopt( SLAP_FD2SOCK( slap_listeners[l]->sl_sd ),
SOL_SOCKET,
SO_SNDBUF,
(void *)&realsize,
&optlen );
if ( rc ) {
int err = sock_errno();
Debug( LDAP_DEBUG_ANY,
"slapd_daemon_task: getsockopt(SO_SNDBUF) failed errno=%d (%s)\n",
err, sock_errstr(err, ebuf, sizeof(ebuf)) );
}
Debug(LDAP_DEBUG_ANY,
"slapd_daemon_task: url=%s (#%d) SNDBUF original size=%d requested size=%d real size=%d\n",
slap_listeners[l]->sl_url.bv_val, l,
origsize, size, realsize );
}
}
#endif /* LDAP_TCP_BUFFER */
if ( listen( SLAP_FD2SOCK( slap_listeners[l]->sl_sd ), SLAPD_LISTEN_BACKLOG ) == -1 ) {
int err = sock_errno();
#ifdef LDAP_PF_INET6
/* If error is EADDRINUSE, we are trying to listen to INADDR_ANY and
* we are already listening to in6addr_any, then we want to ignore
* this and continue.
*/
if ( err == EADDRINUSE ) {
int i;
struct sockaddr_in sa = slap_listeners[l]->sl_sa.sa_in_addr;
struct sockaddr_in6 sa6;
if ( sa.sin_family == AF_INET &&
sa.sin_addr.s_addr == htonl(INADDR_ANY) ) {
for ( i = 0 ; i < l; i++ ) {
sa6 = slap_listeners[i]->sl_sa.sa_in6_addr;
if ( sa6.sin6_family == AF_INET6 &&
!memcmp( &sa6.sin6_addr, &in6addr_any,
sizeof(struct in6_addr) ) )
{
break;
}
}
if ( i < l ) {
/* We are already listening to in6addr_any */
Debug( LDAP_DEBUG_CONNS,
"daemon: Attempt to listen to 0.0.0.0 failed, "
"already listening on ::, assuming IPv4 included\n" );
slapd_close( slap_listeners[l]->sl_sd );
slap_listeners[l]->sl_sd = AC_SOCKET_INVALID;
continue;
}
}
}
#endif /* LDAP_PF_INET6 */
Debug( LDAP_DEBUG_ANY,
"daemon: listen(%s, 5) failed errno=%d (%s)\n",
slap_listeners[l]->sl_url.bv_val, err,
sock_errstr(err, ebuf, sizeof(ebuf)) );
ldap_pvt_thread_mutex_lock( &slapd_init_mutex );
slapd_shutdown = 2;
ldap_pvt_thread_cond_signal( &slapd_init_cond );
ldap_pvt_thread_mutex_unlock( &slapd_init_mutex );
return (void*)-1;
}
/* make the listening socket non-blocking */
if ( ber_pvt_socket_set_nonblock( SLAP_FD2SOCK( slap_listeners[l]->sl_sd ), 1 ) < 0 ) {
Debug( LDAP_DEBUG_ANY, "slapd_daemon_task: "
"set nonblocking on a listening socket failed\n" );
ldap_pvt_thread_mutex_lock( &slapd_init_mutex );
slapd_shutdown = 2;
ldap_pvt_thread_cond_signal( &slapd_init_cond );
ldap_pvt_thread_mutex_unlock( &slapd_init_mutex );
return (void*)-1;
}
slapd_add( slap_listeners[l]->sl_sd, 0, slap_listeners[l], -1 );
}
ldap_pvt_thread_mutex_lock( &slapd_init_mutex );
slapd_ready = 1;
ldap_pvt_thread_cond_signal( &slapd_init_cond );
ldap_pvt_thread_mutex_unlock( &slapd_init_mutex );
#ifdef HAVE_NT_SERVICE_MANAGER
if ( started_event != NULL ) {
ldap_pvt_thread_cond_signal( &started_event );
}
#endif /* HAVE_NT_SERVICE_MANAGER */
loop:
/* initialization complete. Here comes the loop. */
while ( !slapd_shutdown ) {
ber_socket_t i;
int ns, nwriters;
int at;
ber_socket_t nfds;
#if SLAP_EVENTS_ARE_INDEXED
ber_socket_t nrfds, nwfds;
#endif /* SLAP_EVENTS_ARE_INDEXED */
#define SLAPD_EBADF_LIMIT 16
time_t now;
SLAP_EVENT_DECL;
struct timeval tv;
struct timeval *tvp;
struct timeval cat;
time_t tdelta = 1;
struct re_s* rtask;
now = slap_get_time();
if ( !tid && ( global_idletimeout > 0 )) {
int check = 0;
/* Set the select timeout.
* Don't just truncate, preserve the fractions of
* seconds to prevent sleeping for zero time.
*/
{
tv.tv_sec = global_idletimeout / SLAPD_IDLE_CHECK_LIMIT;
tv.tv_usec = global_idletimeout - \
( tv.tv_sec * SLAPD_IDLE_CHECK_LIMIT );
tv.tv_usec *= 1000000 / SLAPD_IDLE_CHECK_LIMIT;
if ( difftime( last_idle_check +
global_idletimeout/SLAPD_IDLE_CHECK_LIMIT, now ) < 0 )
check = 1;
}
if ( check ) {
connections_timeout_idle( now );
last_idle_check = now;
}
} else {
tv.tv_sec = 0;
tv.tv_usec = 0;
}
#ifdef SIGHUP
if ( slapd_gentle_shutdown ) {
ber_socket_t active;
if ( !tid && slapd_gentle_shutdown == 1 ) {
BackendDB *be;
Debug( LDAP_DEBUG_ANY, "slapd gentle shutdown\n" );
close_listeners( 1 );
frontendDB->be_restrictops |= SLAP_RESTRICT_OP_WRITES;
LDAP_STAILQ_FOREACH(be, &backendDB, be_next) {
be->be_restrictops |= SLAP_RESTRICT_OP_WRITES;
}
slapd_gentle_shutdown = 2;
}
ldap_pvt_thread_mutex_lock( &slap_daemon[tid].sd_mutex );
active = slap_daemon[tid].sd_nactives;
ldap_pvt_thread_mutex_unlock( &slap_daemon[tid].sd_mutex );
if ( active == 0 ) {
if ( !tid ) {
for ( l=1; lsl_sd == AC_SOCKET_INVALID ) continue;
if ( DAEMON_ID( lr->sl_sd ) != tid ) continue;
if ( !SLAP_SOCK_IS_ACTIVE( tid, lr->sl_sd )) continue;
if ( lr->sl_mute || lr->sl_busy )
{
SLAP_SOCK_CLR_READ( tid, lr->sl_sd );
} else {
SLAP_SOCK_SET_READ( tid, lr->sl_sd );
}
}
SLAP_EVENT_INIT(tid);
nfds = SLAP_EVENT_MAX(tid);
if (( global_idletimeout ) && slap_daemon[tid].sd_nactives ) at = 1;
ldap_pvt_thread_mutex_unlock( &slap_daemon[tid].sd_mutex );
if ( at
#if defined(HAVE_YIELDING_SELECT)
&& ( tv.tv_sec || tv.tv_usec )
#endif /* HAVE_YIELDING_SELECT */
)
{
tvp = &tv;
} else {
tvp = NULL;
}
/* Only thread 0 handles runqueue */
if ( !tid ) {
ldap_pvt_thread_mutex_lock( &slapd_rq.rq_mutex );
rtask = ldap_pvt_runqueue_next_sched( &slapd_rq, &cat );
while ( rtask && cat.tv_sec && cat.tv_sec <= now ) {
if ( ldap_pvt_runqueue_isrunning( &slapd_rq, rtask )) {
ldap_pvt_runqueue_resched( &slapd_rq, rtask, 0 );
} else {
ldap_pvt_runqueue_runtask( &slapd_rq, rtask );
ldap_pvt_runqueue_resched( &slapd_rq, rtask, 0 );
ldap_pvt_thread_mutex_unlock( &slapd_rq.rq_mutex );
ldap_pvt_thread_pool_submit2( &connection_pool,
rtask->routine, (void *) rtask, &rtask->pool_cookie );
ldap_pvt_thread_mutex_lock( &slapd_rq.rq_mutex );
}
rtask = ldap_pvt_runqueue_next_sched( &slapd_rq, &cat );
}
ldap_pvt_thread_mutex_unlock( &slapd_rq.rq_mutex );
if ( rtask && cat.tv_sec ) {
/* NOTE: diff __should__ always be >= 0,
* AFAI understand; however (ITS#4872),
* time_t might be unsigned in some systems,
* while difftime() returns a double */
double diff = difftime( cat.tv_sec, now );
if ( diff <= 0 ) {
diff = tdelta;
}
if ( tvp == NULL || diff < tv.tv_sec ) {
tv.tv_sec = diff;
tv.tv_usec = 0;
tvp = &tv;
}
}
}
for ( l = 0; slap_listeners[l] != NULL; l++ ) {
Listener *lr = slap_listeners[l];
if ( lr->sl_sd == AC_SOCKET_INVALID ) {
continue;
}
if ( DAEMON_ID( lr->sl_sd ) != tid ) continue;
if ( lr->sl_mute ) {
Debug( LDAP_DEBUG_CONNS,
"daemon: " SLAP_EVENT_FNAME ": "
"listen=%d muted\n",
lr->sl_sd );
continue;
}
if ( lr->sl_busy ) {
Debug( LDAP_DEBUG_CONNS,
"daemon: " SLAP_EVENT_FNAME ": "
"listen=%d busy\n",
lr->sl_sd );
continue;
}
Debug( LDAP_DEBUG_CONNS,
"daemon: " SLAP_EVENT_FNAME ": "
"listen=%d active_threads=%d tvp=%s\n",
lr->sl_sd, at, tvp == NULL ? "NULL" : "zero" );
}
SLAP_EVENT_WAIT( tid, tvp, &ns );
switch ( ns ) {
case -1: { /* failure - try again */
int err = sock_errno();
if ( err != EINTR ) {
ebadf++;
/* Don't log unless we got it twice in a row */
if ( !( ebadf & 1 ) ) {
Debug( LDAP_DEBUG_ANY,
"daemon: "
SLAP_EVENT_FNAME
" failed count %d "
"err (%d): %s\n",
ebadf, err,
sock_errstr( err, ebuf, sizeof(ebuf) ) );
}
if ( ebadf >= SLAPD_EBADF_LIMIT ) {
slapd_shutdown = 2;
}
}
}
continue;
case 0: /* timeout - let threads run */
ebadf = 0;
#ifndef HAVE_YIELDING_SELECT
Debug( LDAP_DEBUG_CONNS, "daemon: " SLAP_EVENT_FNAME
"timeout - yielding\n" );
ldap_pvt_thread_yield();
#endif /* ! HAVE_YIELDING_SELECT */
continue;
default: /* something happened - deal with it */
if ( slapd_shutdown ) continue;
ebadf = 0;
Debug( LDAP_DEBUG_CONNS,
"daemon: activity on %d descriptor%s\n",
ns, ns != 1 ? "s" : "" );
/* FALL THRU */
}
#if SLAP_EVENTS_ARE_INDEXED
if ( SLAP_EVENT_IS_READ( wake_sds[tid][0] ) ) {
char c[BUFSIZ];
SLAP_EVENT_CLR_READ( wake_sds[tid][0] );
waking = 0;
tcp_read( SLAP_FD2SOCK(wake_sds[tid][0]), c, sizeof(c) );
Debug( LDAP_DEBUG_CONNS, "daemon: waked\n" );
continue;
}
/* The event slot equals the descriptor number - this is
* true for Unix select and poll. We treat Windows select
* like this too, even though it's a kludge.
*/
if ( listening )
for ( l = 0; slap_listeners[l] != NULL; l++ ) {
int rc;
if ( ns <= 0 ) break;
if ( slap_listeners[l]->sl_sd == AC_SOCKET_INVALID ) continue;
if ( DAEMON_ID( slap_listeners[l]->sl_sd ) != tid ) continue;
#ifdef LDAP_CONNECTIONLESS
if ( slap_listeners[l]->sl_is_udp ) continue;
#endif /* LDAP_CONNECTIONLESS */
if ( !SLAP_EVENT_IS_READ( slap_listeners[l]->sl_sd ) ) continue;
/* clear events */
SLAP_EVENT_CLR_READ( slap_listeners[l]->sl_sd );
SLAP_EVENT_CLR_WRITE( slap_listeners[l]->sl_sd );
ns--;
rc = slap_listener_activate( slap_listeners[l] );
}
/* bypass the following tests if no descriptors left */
if ( ns <= 0 ) {
#ifndef HAVE_YIELDING_SELECT
ldap_pvt_thread_yield();
#endif /* HAVE_YIELDING_SELECT */
continue;
}
Debug( LDAP_DEBUG_CONNS, "daemon: activity on:" );
nrfds = 0;
nwfds = 0;
for ( i = 0; i < nfds; i++ ) {
int r, w;
r = SLAP_EVENT_IS_READ( i );
/* writefds was not initialized if nwriters was zero */
w = nwriters ? SLAP_EVENT_IS_WRITE( i ) : 0;
if ( r || w ) {
Debug( LDAP_DEBUG_CONNS, " %d%s%s", i,
r ? "r" : "", w ? "w" : "" );
if ( r ) {
nrfds++;
ns--;
}
if ( w ) {
nwfds++;
ns--;
}
}
if ( ns <= 0 ) break;
}
Debug( LDAP_DEBUG_CONNS, "\n" );
/* loop through the writers */
for ( i = 0; nwfds > 0; i++ ) {
ber_socket_t wd;
if ( ! SLAP_EVENT_IS_WRITE( i ) ) continue;
wd = i;
SLAP_EVENT_CLR_WRITE( wd );
nwfds--;
Debug( LDAP_DEBUG_CONNS,
"daemon: write active on %d\n",
wd );
/*
* NOTE: it is possible that the connection was closed
* and that the stream is now inactive.
* connection_write() must validate the stream is still
* active.
*
* ITS#4338: if the stream is invalid, there is no need to
* close it here. It has already been closed in connection.c.
*/
if ( connection_write( wd ) < 0 ) {
if ( SLAP_EVENT_IS_READ( wd ) ) {
SLAP_EVENT_CLR_READ( (unsigned) wd );
nrfds--;
}
}
}
for ( i = 0; nrfds > 0; i++ ) {
ber_socket_t rd;
if ( ! SLAP_EVENT_IS_READ( i ) ) continue;
rd = i;
SLAP_EVENT_CLR_READ( rd );
nrfds--;
Debug ( LDAP_DEBUG_CONNS,
"daemon: read activity on %d\n", rd );
/*
* NOTE: it is possible that the connection was closed
* and that the stream is now inactive.
* connection_read() must valid the stream is still
* active.
*/
connection_read_activate( rd );
}
#else /* !SLAP_EVENTS_ARE_INDEXED */
/* FIXME */
/* The events are returned in an arbitrary list. This is true
* for /dev/poll, epoll and kqueue. In order to prioritize things
* so that we can handle wake_sds first, listeners second, and then
* all other connections last (as we do for select), we would need
* to use multiple event handles and cascade them.
*
* That seems like a bit of hassle. So the wake_sds check has been
* skipped. For epoll and kqueue we can associate arbitrary data with
* an event, so we could use pointers to the listener structure
* instead of just the file descriptor. For /dev/poll we have to
* search the listeners array for a matching descriptor.
*
* We now handle wake events when we see them; they are not given
* higher priority.
*/
#ifdef LDAP_DEBUG
Debug( LDAP_DEBUG_CONNS, "daemon: activity on:" );
for ( i = 0; i < ns; i++ ) {
int r, w, fd;
/* Don't log listener events */
if ( SLAP_EVENT_IS_LISTENER( tid, i )
#ifdef LDAP_CONNECTIONLESS
&& !( (SLAP_EVENT_LISTENER( tid, i ))->sl_is_udp )
#endif /* LDAP_CONNECTIONLESS */
)
{
continue;
}
fd = SLAP_EVENT_FD( tid, i );
/* Don't log internal wake events */
if ( fd == wake_sds[tid][0] ) continue;
#ifdef HAVE_KQUEUE
r = SLAP_EVENT_IS_READ( tid, i );
w = SLAP_EVENT_IS_WRITE( tid, i );
#else
r = SLAP_EVENT_IS_READ( i );
w = SLAP_EVENT_IS_WRITE( i );
#endif /* HAVE_KQUEUE */
if ( r || w ) {
Debug( LDAP_DEBUG_CONNS, " %d%s%s", fd,
r ? "r" : "", w ? "w" : "" );
}
}
Debug( LDAP_DEBUG_CONNS, "\n" );
#endif /* LDAP_DEBUG */
for ( i = 0; i < ns; i++ ) {
int rc = 1, fd, w = 0, r = 0;
if ( SLAP_EVENT_IS_LISTENER( tid, i ) ) {
rc = slap_listener_activate( SLAP_EVENT_LISTENER( tid, i ) );
}
/* If we found a regular listener, rc is now zero, and we
* can skip the data portion. But if it was a UDP listener
* then rc is still 1, and we want to handle the data.
*/
if ( rc ) {
fd = SLAP_EVENT_FD( tid, i );
/* Handle wake events */
if ( fd == wake_sds[tid][0] ) {
char c[BUFSIZ];
waking = 0;
(void)!tcp_read( SLAP_FD2SOCK(wake_sds[tid][0]), c, sizeof(c) );
continue;
}
#ifdef HAVE_KQUEUE
if ( SLAP_EVENT_IS_WRITE( tid, i ) )
#else
if ( SLAP_EVENT_IS_WRITE( i ) )
#endif /* HAVE_KQUEUE */
{
Debug( LDAP_DEBUG_CONNS,
"daemon: write active on %d\n",
fd );
SLAP_EVENT_CLR_WRITE( i );
w = 1;
/*
* NOTE: it is possible that the connection was closed
* and that the stream is now inactive.
* connection_write() must valid the stream is still
* active.
*/
if ( connection_write( fd ) < 0 ) {
continue;
}
}
/* If event is a read */
#ifdef HAVE_KQUEUE
if ( SLAP_EVENT_IS_READ( tid, i ))
#else
if ( SLAP_EVENT_IS_READ( i ))
#endif /* HAVE_KQUEUE */
{
r = 1;
Debug( LDAP_DEBUG_CONNS,
"daemon: read active on %d\n",
fd );
SLAP_EVENT_CLR_READ( i );
connection_read_activate( fd );
} else if ( !w ) {
#ifdef HAVE_EPOLL
/* Don't keep reporting the hangup
*/
if ( SLAP_SOCK_IS_ACTIVE( tid, fd )) {
SLAP_EPOLL_SOCK_SET( tid, fd, EPOLLET );
}
#endif
}
}
}
#endif /* SLAP_EVENTS_ARE_INDEXED */
/* Was number of listener threads decreased? */
if ( ldap_pvt_thread_pool_pausecheck_native( &connection_pool )) {
/* decreased, let this thread finish */
if ( tid >= slapd_daemon_threads )
break;
}
#ifndef HAVE_YIELDING_SELECT
ldap_pvt_thread_yield();
#endif /* ! HAVE_YIELDING_SELECT */
}
/* Only thread 0 handles shutdown */
if ( tid )
return NULL;
if ( slapd_shutdown == 1 ) {
Debug( LDAP_DEBUG_ANY,
"daemon: shutdown requested and initiated.\n" );
} else if ( slapd_shutdown == 2 ) {
#ifdef HAVE_NT_SERVICE_MANAGER
Debug( LDAP_DEBUG_ANY,
"daemon: shutdown initiated by Service Manager.\n" );
#else /* !HAVE_NT_SERVICE_MANAGER */
Debug( LDAP_DEBUG_ANY,
"daemon: abnormal condition, shutdown initiated.\n" );
#endif /* !HAVE_NT_SERVICE_MANAGER */
} else {
Debug( LDAP_DEBUG_ANY,
"daemon: no active streams, shutdown initiated.\n" );
}
close_listeners( 1 );
if ( !slapd_gentle_shutdown ) {
slapd_abrupt_shutdown = 1;
connections_shutdown();
}
#ifdef HAVE_KQUEUE
close( slap_daemon[tid].sd_kq );
#endif
if ( LogTest( LDAP_DEBUG_ANY )) {
int t = ldap_pvt_thread_pool_backload( &connection_pool );
Debug( LDAP_DEBUG_ANY,
"slapd shutdown: waiting for %d operations/tasks to finish\n",
t );
}
ldap_pvt_thread_pool_close( &connection_pool, 1 );
return NULL;
}
typedef struct slap_tid_waiter {
int num_tids;
ldap_pvt_thread_t tids[0];
} slap_tid_waiter;
static void *
slapd_daemon_tid_cleanup(
void *ctx,
void *ptr )
{
slap_tid_waiter *tids = ptr;
int i;
for ( i=0; inum_tids; i++ )
ldap_pvt_thread_join( tids->tids[i], (void *)NULL );
ch_free( ptr );
return NULL;
}
int
slapd_daemon_resize( int newnum )
{
int i, rc;
if ( newnum == slapd_daemon_threads )
return 0;
/* wake up all current listener threads */
for ( i=0; i slapd_daemon_threads ) {
wake_sds = ch_realloc( wake_sds, newnum * sizeof( sdpair ));
slap_daemon = ch_realloc( slap_daemon, newnum * sizeof( slap_daemon_st ));
for ( i=slapd_daemon_threads; inum_tids = slapd_daemon_threads - newnum;
for ( i=newnum, j=0; itids[j] = slap_daemon[i].sd_tid;
#ifdef HAVE_WINSOCK
if ( wake_sds[i][1] != INVALID_SOCKET &&
SLAP_FD2SOCK( wake_sds[i][1] ) != SLAP_FD2SOCK( wake_sds[i][0] ))
#endif /* HAVE_WINSOCK */
tcp_close( SLAP_FD2SOCK(wake_sds[i][1]) );
#ifdef HAVE_WINSOCK
if ( wake_sds[i][0] != INVALID_SOCKET )
#endif /* HAVE_WINSOCK */
tcp_close( SLAP_FD2SOCK(wake_sds[i][0]) );
SLAP_SOCK_DESTROY( i );
}
wake_sds = ch_realloc( wake_sds, newnum * sizeof( sdpair ));
slap_daemon = ch_realloc( slap_daemon, newnum * sizeof( slap_daemon_st ));
for ( i=0; isl_is_udp ) {
continue;
}
c = connection_init( lr->sl_sd, lr, "", "",
CONN_IS_UDP, (slap_ssf_t) 0, NULL
LDAP_PF_LOCAL_SENDMSG_ARG(NULL));
if ( !c ) {
Debug( LDAP_DEBUG_TRACE,
"connectionless_init: failed on %s (%d)\n",
lr->sl_url.bv_val, lr->sl_sd );
return -1;
}
lr->sl_is_udp++;
}
return 0;
}
#endif /* LDAP_CONNECTIONLESS */
int
slapd_daemon( void )
{
int i, rc;
#ifdef LDAP_CONNECTIONLESS
connectionless_init();
#endif /* LDAP_CONNECTIONLESS */
SLAP_SOCK_INIT2();
/* daemon_init only inits element 0 */
for ( i=1; ibi_pause ) {
rc = bi->bi_pause( bi );
if ( rc != LDAP_SUCCESS ) {
Debug( LDAP_DEBUG_ANY, "slap_pause_server: "
"bi_pause failed for backend %s\n",
bi->bi_type );
return rc;
}
}
}
return rc;
}
int
slap_unpause_server( void )
{
BackendInfo *bi;
int rc = LDAP_SUCCESS;
LDAP_STAILQ_FOREACH(bi, &backendInfo, bi_next) {
if ( bi->bi_unpause ) {
rc = bi->bi_unpause( bi );
if ( rc != LDAP_SUCCESS ) {
Debug( LDAP_DEBUG_ANY, "slap_unpause_server: "
"bi_unpause failed for backend %s\n",
bi->bi_type );
return rc;
}
}
}
rc = ldap_pvt_thread_pool_resume( &connection_pool );
return rc;
}
void
slapd_add_internal( ber_socket_t s, int isactive )
{
if (!isactive) {
SET_CLOSE(s);
}
slapd_add( s, isactive, NULL, -1 );
}
Listener **
slapd_get_listeners( void )
{
/* Could return array with no listeners if !listening, but current
* callers mostly look at the URLs. E.g. syncrepl uses this to
* identify the server, which means it wants the startup arguments.
*/
return slap_listeners;
}
/* Reject all incoming requests */
void
slap_suspend_listeners( void )
{
int i;
for (i=0; slap_listeners[i]; i++) {
slap_listeners[i]->sl_mute = 1;
listen( slap_listeners[i]->sl_sd, 0 );
}
}
/* Resume after a suspend */
void
slap_resume_listeners( void )
{
int i;
for (i=0; slap_listeners[i]; i++) {
slap_listeners[i]->sl_mute = 0;
listen( slap_listeners[i]->sl_sd, SLAPD_LISTEN_BACKLOG );
}
}
void
slap_wake_listener()
{
WAKE_LISTENER(0,1);
}
/* return 0 on timeout, 1 on writer ready
* -1 on general error
*/
int
slapd_wait_writer( ber_socket_t sd )
{
#ifdef HAVE_WINSOCK
fd_set writefds;
struct timeval tv, *tvp;
FD_ZERO( &writefds );
FD_SET( slapd_ws_sockets[sd], &writefds );
if ( global_writetimeout ) {
tv.tv_sec = global_writetimeout;
tv.tv_usec = 0;
tvp = &tv;
} else {
tvp = NULL;
}
return select( 0, NULL, &writefds, NULL, tvp );
#else
struct pollfd fds;
int timeout = global_writetimeout ? global_writetimeout * 1000 : -1;
fds.fd = sd;
fds.events = POLLOUT;
return poll( &fds, 1, timeout );
#endif
}