/* $NetBSD: idl.c,v 1.2 2021/08/14 16:15:02 christos Exp $ */
/* OpenLDAP WiredTiger backend */
/* $OpenLDAP$ */
/* This work is part of OpenLDAP Software .
*
* Copyright 2002-2021 The OpenLDAP Foundation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted only as authorized by the OpenLDAP
* Public License.
*
* A copy of this license is available in the file LICENSE in the
* top-level directory of the distribution or, alternatively, at
* .
*/
/* ACKNOWLEDGEMENTS:
* This work was developed by HAMANO Tsukasa
* based on back-bdb for inclusion in OpenLDAP Software.
* WiredTiger is a product of MongoDB Inc.
*/
#include
__RCSID("$NetBSD: idl.c,v 1.2 2021/08/14 16:15:02 christos Exp $");
#include "portable.h"
#include
#include
#include "back-wt.h"
#include "idl.h"
#define IDL_MAX(x,y) ( (x) > (y) ? (x) : (y) )
#define IDL_MIN(x,y) ( (x) < (y) ? (x) : (y) )
#define IDL_CMP(x,y) ( (x) < (y) ? -1 : (x) > (y) )
#if IDL_DEBUG > 0
static void idl_check( ID *ids )
{
if( WT_IDL_IS_RANGE( ids ) ) {
assert( WT_IDL_RANGE_FIRST(ids) <= WT_IDL_RANGE_LAST(ids) );
} else {
ID i;
for( i=1; i < ids[0]; i++ ) {
assert( ids[i+1] > ids[i] );
}
}
}
#if IDL_DEBUG > 1
static void idl_dump( ID *ids )
{
if( WT_IDL_IS_RANGE( ids ) ) {
Debug( LDAP_DEBUG_ANY,
"IDL: range ( %ld - %ld )\n",
(long) WT_IDL_RANGE_FIRST( ids ),
(long) WT_IDL_RANGE_LAST( ids ) );
} else {
ID i;
Debug( LDAP_DEBUG_ANY, "IDL: size %ld", (long) ids[0] );
for( i=1; i<=ids[0]; i++ ) {
if( i % 16 == 1 ) {
Debug( LDAP_DEBUG_ANY, "\n" );
}
Debug( LDAP_DEBUG_ANY, " %02lx", (long) ids[i] );
}
Debug( LDAP_DEBUG_ANY, "\n" );
}
idl_check( ids );
}
#endif /* IDL_DEBUG > 1 */
#endif /* IDL_DEBUG > 0 */
unsigned wt_idl_search( ID *ids, ID id )
{
#define IDL_BINARY_SEARCH 1
#ifdef IDL_BINARY_SEARCH
/*
* binary search of id in ids
* if found, returns position of id
* if not found, returns first position greater than id
*/
unsigned base = 0;
unsigned cursor = 1;
int val = 0;
unsigned n = ids[0];
#if IDL_DEBUG > 0
idl_check( ids );
#endif
while( 0 < n ) {
unsigned pivot = n >> 1;
cursor = base + pivot + 1;
val = IDL_CMP( id, ids[cursor] );
if( val < 0 ) {
n = pivot;
} else if ( val > 0 ) {
base = cursor;
n -= pivot + 1;
} else {
return cursor;
}
}
if( val > 0 ) {
++cursor;
}
return cursor;
#else
/* (reverse) linear search */
int i;
#if IDL_DEBUG > 0
idl_check( ids );
#endif
for( i=ids[0]; i; i-- ) {
if( id > ids[i] ) {
break;
}
}
return i+1;
#endif
}
int wt_idl_insert( ID *ids, ID id )
{
unsigned x;
#if IDL_DEBUG > 1
Debug( LDAP_DEBUG_ANY, "insert: %04lx at %d\n", (long) id, x );
idl_dump( ids );
#elif IDL_DEBUG > 0
idl_check( ids );
#endif
if (WT_IDL_IS_RANGE( ids )) {
/* if already in range, treat as a dup */
if (id >= WT_IDL_RANGE_FIRST(ids) && id <= WT_IDL_RANGE_LAST(ids))
return -1;
if (id < WT_IDL_RANGE_FIRST(ids))
ids[1] = id;
else if (id > WT_IDL_RANGE_LAST(ids))
ids[2] = id;
return 0;
}
x = wt_idl_search( ids, id );
assert( x > 0 );
if( x < 1 ) {
/* internal error */
return -2;
}
if ( x <= ids[0] && ids[x] == id ) {
/* duplicate */
return -1;
}
if ( ++ids[0] >= WT_IDL_DB_MAX ) {
if( id < ids[1] ) {
ids[1] = id;
ids[2] = ids[ids[0]-1];
} else if ( ids[ids[0]-1] < id ) {
ids[2] = id;
} else {
ids[2] = ids[ids[0]-1];
}
ids[0] = NOID;
} else {
/* insert id */
AC_MEMCPY( &ids[x+1], &ids[x], (ids[0]-x) * sizeof(ID) );
ids[x] = id;
}
#if IDL_DEBUG > 1
idl_dump( ids );
#elif IDL_DEBUG > 0
idl_check( ids );
#endif
return 0;
}
static int wt_idl_delete( ID *ids, ID id )
{
unsigned x;
#if IDL_DEBUG > 1
Debug( LDAP_DEBUG_ANY, "delete: %04lx at %d\n", (long) id, x );
idl_dump( ids );
#elif IDL_DEBUG > 0
idl_check( ids );
#endif
if (WT_IDL_IS_RANGE( ids )) {
/* If deleting a range boundary, adjust */
if ( ids[1] == id )
ids[1]++;
else if ( ids[2] == id )
ids[2]--;
/* deleting from inside a range is a no-op */
/* If the range has collapsed, re-adjust */
if ( ids[1] > ids[2] )
ids[0] = 0;
else if ( ids[1] == ids[2] )
ids[1] = 1;
return 0;
}
x = wt_idl_search( ids, id );
assert( x > 0 );
if( x <= 0 ) {
/* internal error */
return -2;
}
if( x > ids[0] || ids[x] != id ) {
/* not found */
return -1;
} else if ( --ids[0] == 0 ) {
if( x != 1 ) {
return -3;
}
} else {
AC_MEMCPY( &ids[x], &ids[x+1], (1+ids[0]-x) * sizeof(ID) );
}
#if IDL_DEBUG > 1
idl_dump( ids );
#elif IDL_DEBUG > 0
idl_check( ids );
#endif
return 0;
}
static char *
wt_show_key(
char *buf,
void *val,
size_t len )
{
if ( len == 4 /* LUTIL_HASH_BYTES */ ) {
unsigned char *c = val;
sprintf( buf, "[%02x%02x%02x%02x]", c[0], c[1], c[2], c[3] );
return buf;
} else {
return val;
}
}
/*
* idl_intersection - return a = a intersection b
*/
int
wt_idl_intersection(
ID *a,
ID *b )
{
ID ida, idb;
ID idmax, idmin;
ID cursora = 0, cursorb = 0, cursorc;
int swap = 0;
if ( WT_IDL_IS_ZERO( a ) || WT_IDL_IS_ZERO( b ) ) {
a[0] = 0;
return 0;
}
idmin = IDL_MAX( WT_IDL_FIRST(a), WT_IDL_FIRST(b) );
idmax = IDL_MIN( WT_IDL_LAST(a), WT_IDL_LAST(b) );
if ( idmin > idmax ) {
a[0] = 0;
return 0;
} else if ( idmin == idmax ) {
a[0] = 1;
a[1] = idmin;
return 0;
}
if ( WT_IDL_IS_RANGE( a ) ) {
if ( WT_IDL_IS_RANGE(b) ) {
/* If both are ranges, just shrink the boundaries */
a[1] = idmin;
a[2] = idmax;
return 0;
} else {
/* Else swap so that b is the range, a is a list */
ID *tmp = a;
a = b;
b = tmp;
swap = 1;
}
}
/* If a range completely covers the list, the result is
* just the list. If idmin to idmax is contiguous, just
* turn it into a range.
*/
if ( WT_IDL_IS_RANGE( b )
&& WT_IDL_RANGE_FIRST( b ) <= WT_IDL_FIRST( a )
&& WT_IDL_RANGE_LAST( b ) >= WT_IDL_LLAST( a ) ) {
if (idmax - idmin + 1 == a[0])
{
a[0] = NOID;
a[1] = idmin;
a[2] = idmax;
}
goto done;
}
/* Fine, do the intersection one element at a time.
* First advance to idmin in both IDLs.
*/
cursora = cursorb = idmin;
ida = wt_idl_first( a, &cursora );
idb = wt_idl_first( b, &cursorb );
cursorc = 0;
while( ida <= idmax || idb <= idmax ) {
if( ida == idb ) {
a[++cursorc] = ida;
ida = wt_idl_next( a, &cursora );
idb = wt_idl_next( b, &cursorb );
} else if ( ida < idb ) {
ida = wt_idl_next( a, &cursora );
} else {
idb = wt_idl_next( b, &cursorb );
}
}
a[0] = cursorc;
done:
if (swap)
WT_IDL_CPY( b, a );
return 0;
}
/*
* idl_union - return a = a union b
*/
int
wt_idl_union(
ID *a,
ID *b )
{
ID ida, idb;
ID cursora = 0, cursorb = 0, cursorc;
if ( WT_IDL_IS_ZERO( b ) ) {
return 0;
}
if ( WT_IDL_IS_ZERO( a ) ) {
WT_IDL_CPY( a, b );
return 0;
}
if ( WT_IDL_IS_RANGE( a ) || WT_IDL_IS_RANGE(b) ) {
over: ida = IDL_MIN( WT_IDL_FIRST(a), WT_IDL_FIRST(b) );
idb = IDL_MAX( WT_IDL_LAST(a), WT_IDL_LAST(b) );
a[0] = NOID;
a[1] = ida;
a[2] = idb;
return 0;
}
ida = wt_idl_first( a, &cursora );
idb = wt_idl_first( b, &cursorb );
cursorc = b[0];
/* The distinct elements of a are cat'd to b */
while( ida != NOID || idb != NOID ) {
if ( ida < idb ) {
if( ++cursorc > WT_IDL_UM_MAX ) {
goto over;
}
b[cursorc] = ida;
ida = wt_idl_next( a, &cursora );
} else {
if ( ida == idb )
ida = wt_idl_next( a, &cursora );
idb = wt_idl_next( b, &cursorb );
}
}
/* b is copied back to a in sorted order */
a[0] = cursorc;
cursora = 1;
cursorb = 1;
cursorc = b[0]+1;
while (cursorb <= b[0] || cursorc <= a[0]) {
if (cursorc > a[0])
idb = NOID;
else
idb = b[cursorc];
if (cursorb <= b[0] && b[cursorb] < idb)
a[cursora++] = b[cursorb++];
else {
a[cursora++] = idb;
cursorc++;
}
}
return 0;
}
#if 0
/*
* wt_idl_notin - return a intersection ~b (or a minus b)
*/
int
wt_idl_notin(
ID *a,
ID *b,
ID *ids )
{
ID ida, idb;
ID cursora = 0, cursorb = 0;
if( WT_IDL_IS_ZERO( a ) ||
WT_IDL_IS_ZERO( b ) ||
WT_IDL_IS_RANGE( b ) )
{
WT_IDL_CPY( ids, a );
return 0;
}
if( WT_IDL_IS_RANGE( a ) ) {
WT_IDL_CPY( ids, a );
return 0;
}
ida = wt_idl_first( a, &cursora ),
idb = wt_idl_first( b, &cursorb );
ids[0] = 0;
while( ida != NOID ) {
if ( idb == NOID ) {
/* we could shortcut this */
ids[++ids[0]] = ida;
ida = wt_idl_next( a, &cursora );
} else if ( ida < idb ) {
ids[++ids[0]] = ida;
ida = wt_idl_next( a, &cursora );
} else if ( ida > idb ) {
idb = wt_idl_next( b, &cursorb );
} else {
ida = wt_idl_next( a, &cursora );
idb = wt_idl_next( b, &cursorb );
}
}
return 0;
}
#endif
ID wt_idl_first( ID *ids, ID *cursor )
{
ID pos;
if ( ids[0] == 0 ) {
*cursor = NOID;
return NOID;
}
if ( WT_IDL_IS_RANGE( ids ) ) {
if( *cursor < ids[1] ) {
*cursor = ids[1];
}
return *cursor;
}
if ( *cursor == 0 )
pos = 1;
else
pos = wt_idl_search( ids, *cursor );
if( pos > ids[0] ) {
return NOID;
}
*cursor = pos;
return ids[pos];
}
ID wt_idl_next( ID *ids, ID *cursor )
{
if ( WT_IDL_IS_RANGE( ids ) ) {
if( ids[2] < ++(*cursor) ) {
return NOID;
}
return *cursor;
}
if ( ++(*cursor) <= ids[0] ) {
return ids[*cursor];
}
return NOID;
}
/* Add one ID to an unsorted list. We ensure that the first element is the
* minimum and the last element is the maximum, for fast range compaction.
* this means IDLs up to length 3 are always sorted...
*/
int wt_idl_append_one( ID *ids, ID id )
{
if (WT_IDL_IS_RANGE( ids )) {
/* if already in range, treat as a dup */
if (id >= WT_IDL_RANGE_FIRST(ids) && id <= WT_IDL_RANGE_LAST(ids))
return -1;
if (id < WT_IDL_RANGE_FIRST(ids))
ids[1] = id;
else if (id > WT_IDL_RANGE_LAST(ids))
ids[2] = id;
return 0;
}
if ( ids[0] ) {
ID tmp;
if (id < ids[1]) {
tmp = ids[1];
ids[1] = id;
id = tmp;
}
if ( ids[0] > 1 && id < ids[ids[0]] ) {
tmp = ids[ids[0]];
ids[ids[0]] = id;
id = tmp;
}
}
ids[0]++;
if ( ids[0] >= WT_IDL_UM_MAX ) {
ids[0] = NOID;
ids[2] = id;
} else {
ids[ids[0]] = id;
}
return 0;
}
/* Append sorted list b to sorted list a. The result is unsorted but
* a[1] is the min of the result and a[a[0]] is the max.
*/
int wt_idl_append( ID *a, ID *b )
{
ID ida, idb, tmp, swap = 0;
if ( WT_IDL_IS_ZERO( b ) ) {
return 0;
}
if ( WT_IDL_IS_ZERO( a ) ) {
WT_IDL_CPY( a, b );
return 0;
}
ida = WT_IDL_LAST( a );
idb = WT_IDL_LAST( b );
if ( WT_IDL_IS_RANGE( a ) || WT_IDL_IS_RANGE(b) ||
a[0] + b[0] >= WT_IDL_UM_MAX ) {
a[2] = IDL_MAX( ida, idb );
a[1] = IDL_MIN( a[1], b[1] );
a[0] = NOID;
return 0;
}
if ( b[0] > 1 && ida > idb ) {
swap = idb;
a[a[0]] = idb;
b[b[0]] = ida;
}
if ( b[1] < a[1] ) {
tmp = a[1];
a[1] = b[1];
} else {
tmp = b[1];
}
a[0]++;
a[a[0]] = tmp;
if ( b[0] > 1 ) {
int i = b[0] - 1;
AC_MEMCPY(a+a[0]+1, b+2, i * sizeof(ID));
a[0] += i;
}
if ( swap ) {
b[b[0]] = swap;
}
return 0;
}
#if 1
/* Quicksort + Insertion sort for small arrays */
#define SMALL 8
#define SWAP(a,b) itmp=(a);(a)=(b);(b)=itmp
void
wt_idl_sort( ID *ids, ID *tmp )
{
int *istack = (int *)tmp; /* Private stack, not used by caller */
int i,j,k,l,ir,jstack;
ID a, itmp;
if ( WT_IDL_IS_RANGE( ids ))
return;
ir = ids[0];
l = 1;
jstack = 0;
for(;;) {
if (ir - l < SMALL) { /* Insertion sort */
for (j=l+1;j<=ir;j++) {
a = ids[j];
for (i=j-1;i>=1;i--) {
if (ids[i] <= a) break;
ids[i+1] = ids[i];
}
ids[i+1] = a;
}
if (jstack == 0) break;
ir = istack[jstack--];
l = istack[jstack--];
} else {
k = (l + ir) >> 1; /* Choose median of left, center, right */
SWAP(ids[k], ids[l+1]);
if (ids[l] > ids[ir]) {
SWAP(ids[l], ids[ir]);
}
if (ids[l+1] > ids[ir]) {
SWAP(ids[l+1], ids[ir]);
}
if (ids[l] > ids[l+1]) {
SWAP(ids[l], ids[l+1]);
}
i = l+1;
j = ir;
a = ids[l+1];
for(;;) {
do i++; while(ids[i] < a);
do j--; while(ids[j] > a);
if (j < i) break;
SWAP(ids[i],ids[j]);
}
ids[l+1] = ids[j];
ids[j] = a;
jstack += 2;
if (ir-i+1 >= j-l) {
istack[jstack] = ir;
istack[jstack-1] = i;
ir = j-1;
} else {
istack[jstack] = j-1;
istack[jstack-1] = l;
l = i;
}
}
}
}
#else
/* 8 bit Radix sort + insertion sort
*
* based on code from http://www.cubic.org/docs/radix.htm
* with improvements by ebackes@symas.com and hyc@symas.com
*
* This code is O(n) but has a relatively high constant factor. For lists
* up to ~50 Quicksort is slightly faster; up to ~100 they are even.
* Much faster than quicksort for lists longer than ~100. Insertion
* sort is actually superior for lists <50.
*/
#define BUCKETS (1<<8)
#define SMALL 50
void
wt_idl_sort( ID *ids, ID *tmp )
{
int count, soft_limit, phase = 0, size = ids[0];
ID *idls[2];
unsigned char *maxv = (unsigned char *)&ids[size];
if ( WT_IDL_IS_RANGE( ids ))
return;
/* Use insertion sort for small lists */
if ( size <= SMALL ) {
int i,j;
ID a;
for (j=1;j<=size;j++) {
a = ids[j];
for (i=j-1;i>=1;i--) {
if (ids[i] <= a) break;
ids[i+1] = ids[i];
}
ids[i+1] = a;
}
return;
}
tmp[0] = size;
idls[0] = ids;
idls[1] = tmp;
#if BYTE_ORDER == BIG_ENDIAN
for (soft_limit = 0; !maxv[soft_limit]; soft_limit++);
#else
for (soft_limit = sizeof(ID)-1; !maxv[soft_limit]; soft_limit--);
#endif
for (
#if BYTE_ORDER == BIG_ENDIAN
count = sizeof(ID)-1; count >= soft_limit; --count
#else
count = 0; count <= soft_limit; ++count
#endif
) {
unsigned int num[BUCKETS], * np, n, sum;
int i;
ID *sp, *source, *dest;
unsigned char *bp, *source_start;
source = idls[phase]+1;
dest = idls[phase^1]+1;
source_start = ((unsigned char *) source) + count;
np = num;
for ( i = BUCKETS; i > 0; --i ) *np++ = 0;
/* count occurrences of every byte value */
bp = source_start;
for ( i = size; i > 0; --i, bp += sizeof(ID) )
num[*bp]++;
/* transform count into index by summing elements and storing
* into same array
*/
sum = 0;
np = num;
for ( i = BUCKETS; i > 0; --i ) {
n = *np;
*np++ = sum;
sum += n;
}
/* fill dest with the right values in the right place */
bp = source_start;
sp = source;
for ( i = size; i > 0; --i, bp += sizeof(ID) ) {
np = num + *bp;
dest[*np] = *sp++;
++(*np);
}
phase ^= 1;
}
/* copy back from temp if needed */
if ( phase ) {
ids++; tmp++;
for ( count = 0; count < size; ++count )
*ids++ = *tmp++;
}
}
#endif /* Quick vs Radix */